1 in 5 Deaths Globally Caused by Fossil Fuel Pollution, a New Study Reveals

Photo by Johannes Plenio on Unsplash
Photo by Johannes Plenio on Unsplash

By Douglas Broom, Senior Writer, Formative Content, World Economic Forum (Public License).

  • Burning fossil fuels is causing nearly one in five of all deaths worldwide.
  • A new study found the death toll is almost twice as high as previously thought.
  • China’s clean-air initiatives have saved 1.5 million lives, but the country still has the highest death toll.
  • The researchers call on policymakers to make the switch to clean energy.

Fossil fuel pollution was responsible for almost one in five deaths in 2018, according to a new study which has prompted calls for governments and businesses to do more to switch to clean energy.

More than eight million people died as a result of breathing in minute particulate matter from burning fossil fuels in 2018, according to research from Harvard University, in collaboration with the University of Birmingham, the University of Leicester and University College London.

They found that particulate pollution was responsible for 18% of deaths in 2018, almost twice the level previously estimated. In 2016, the World Health Organization (WHO) put the global death toll from air pollution at 4.2 million.

We already know that more than nine out of 10 people live in areas where air pollution exceeds WHO safety levels. So how did the researchers arrive at such alarming figures for fossil fuel-related deaths?

The study took a new approach, using a 3D atmospheric modelling tool to pinpoint the greatest concentrations of fine particulate (PM2.5) pollution around the world, and combined that data with more accurate measurements of its effects.

Death toll underestimated

As well as confirming that regions with the worst air pollution have the highest rates of mortality, the study, published in the journal Environmental Research, found that the number of deaths in these regions had been underestimated.

Although China has achieved a dramatic reduction in particulate pollution – numbers almost halved between 2012 and 2018 – the country still emerged with the highest death toll (3.9 million) followed by India (2.5 million).

The study found that without its clean air initiatives, the death toll in China would have been even higher. As well as saving 1.5 million lives in China, the measures had also reduced deaths from particulate pollution outside the country by almost a million as well.

North America, Europe and Asia were also shown to suffer more deaths from particulates than previously thought. Overall, the study found higher mortality rates among people who suffered long-term exposure to fossil-fuel emissions, even at comparatively low levels.

Switch to clean energy

“Our study adds to the mounting evidence that air pollution from ongoing dependence on fossil fuels is detrimental to global health,” said Professor Eloise Marais of University College, London, one of the report’s authors.

“We can’t in good conscience continue to rely on fossil fuels, when we know that there are such severe effects on health and viable, cleaner alternatives,” she added.

Harvard Professor Joel Schwartz, another of the report’s authors, said that often discussion of the harmful effects of burning fossil fuels focused on CO2 emissions and climate change and overlooked the damage to health from pollutants emitted along with greenhouse gases.

“We hope that by quantifying the health consequences of fossil fuel combustion, we can send a clear message to policymakers and stakeholders of the benefits of a transition to alternative energy sources,” he said.

Global leaders, surveyed for the World Economic Forum’s 2021 Global Risks report, ranked human environmental damage, like air pollution, as one of the top 10 clear and present dangers facing the planet. They also ranked it the third most likely risk to materialize in 2021.

Scientists are Reproducing Coral in Labs to Save Them. This is How it Works

Soft corals, algae, fish ( a doctorfish and butterflyfish), and sponges in a highly diverse reef scene. Photo by NOAA on Unsplash.
Soft corals, algae, fish ( a doctorfish and butterflyfish), and sponges in a highly diverse reef scene. Photo by NOAA on Unsplash.

By Jenny Mallon, PhD Candidate in Coral Reef Biogeochemistry, University of Glasgow, World Economic Forum published in collaboration with The Conversation (Public License).

  • Coral reefs are important natural ecosystems but are at risk from a variety of factors, including climate change.
  • Marine biologists are helping corals to reproduce in restoration projects.
  • Understanding successful reproduction could be the key to coral reefs’ survival.

Coral reefs host a quarter of all sea species, but climate change, overfishing, and pollution could drive these ecosystems to extinction within a matter of decades.

Marine biologists have been racing to restore degraded reefs by collecting corals from the wild and breaking them into fragments. This encourages them to grow fast and quickly produces hundreds of smaller corals which can be raised in nurseries and eventually transplanted back onto the reef.

But if each fragment is an identical copy with one common parent, any resulting colony is likely to be genetically identical to the rest of the population. This matters – having a diverse range of genetically conferred traits can help insure reefs against disease and a rapidly changing environment.

So what if scientists could use sexual reproduction in coral restoration projects? In the wild, the stony coral species that compose the bulk of the world’s tropical reefs cast their sperm and eggs into the water column to reproduce. Corals often synchronise these mass spawning events with full moons, when tides are exceptionally high. This ensures powerful water currents disperse the eggs far and wide, so that they’re fertilised by sperm of distant colonies.

Corals often broadcast reproductive material during the full moon, to take advantage of powerful water currents. Image: Jenny Mallon, Author provided.
Corals often broadcast reproductive material during the full moon, to take advantage of powerful water currents. Image: Jenny Mallon, Author provided.

Sexually produced offspring have a unique combination of genes from distinct parents, and this helps keep coral populations genetically diverse. Reefs restored with corals created by sexual reproduction are likely to be more resilient, though managing this process hasn’t been easy for scientists to do. But by working on one project in Mexico, I saw what is possible, and learned how to do it myself.

Coral Sex in the Lab

Coral reefs are so enormous they’re visible from space. But watching them spawn is surprisingly tricky. They only do it on a handful of nights each year and the exact date and time is determined by environmental factors that scientists are still working to fully understand.

Climate change is causing reefs with known spawning patterns to shift their timing too, making these events less frequent and predictable. This makes it difficult for different colonies to synchronise spawning, reducing their chances of successful fertilisation in the wild.

The CORALIUM Laboratory of the National Autonomous University of Mexico is part of a Caribbean-wide network of dedicated coral spawning experts. Scientists here collect coral sperm and eggs from multiple Caribbean reefs in order to fertilise them in the lab.

The team wait for the full moon to signal when corals are likely to spawn. Coral sperm and eggs are collected with floating nets and plastic containers, and divers take extreme care to avoid damaging the reef. The millions of sperm and eggs collected are rushed back to the lab where they’re cleaned and monitored all night as they undergo assisted fertilisation to begin life as free swimming larvae. These larvae are very sensitive to water quality, temperature and pathogens, so they need constant care.

Eventually, the larvae settle on hard surfaces where they change into polyps – the initial building blocks of a coral colony. In the ocean, these surfaces are often dead coral skeletons. In the lab, they are seeding units – 3-D shapes designed by scientists at the conservation organisation SECORE to resemble coral rubble that can float on ocean currents before resting on reefs.

Seeding units mimic coral rubble that floats on ocean currents. Image: SECORE International/Amanda Baye, Author provided.
Seeding units mimic coral rubble that floats on ocean currents. Image: SECORE International/Amanda Baye, Author provided.

Each juvenile produced this way carries a unique mix of genes which they will pass on to a new generation of corals. The resulting population has a stronger gene pool that can help it withstand new diseases and other threats. This long-term strategy also ensures sexual reproduction can continue on restored reefs, which would not be possible for a population composed of identical clones.

Restoring Caribbean Reefs

The Caribbean may have lost as much as 80% of its coral cover since the mid-1970s. The colonies that remain are now relatively isolated, reducing the chances of them being able to crossbreed. But in the controlled conditions of the lab, fertilisation rates of over 80% are common and larval survival is high. That means thousands of juvenile corals are reared until they’re ready for the reef after just a few weeks of incubation.

But with late night dives by experts, specialised materials for collecting spawn and a lab where fertilisation is carefully controlled, this work is often too expensive for smaller restoration projects. So scientists here have developed low-cost methods for lab spawning and are training teams from across the Caribbean to do it.

I took their course in 2016, and one year later, found myself setting up a new spawning site in Akumal, one hour south of the CORALIUM lab near Cancun. Coral spawning had never been observed here, but I trained volunteers from a local dive centre on how to spot the signs. On our fifth consecutive night dive, we saw the synchronised spawning of multiple colonies of Elkorn corals.

We set up a hotel room as a temporary lab with sterilised plastic larvae tanks and filtered seawater and produced thousands of coral babies for restoration sites. In 2018, we built a beachside coral spawning laboratory on a shoestring budget. Positioned under a tree, the breeze block structure has mosquito netting walls that allow the cool sea breeze to keep the tanks at a constant 28-29°C.

Scientists are using laboratories for coral spawning, to ensure survival. Image: Jenny Mallon, Author provided.
Scientists are using laboratories for coral spawning, to ensure survival. Image: Jenny Mallon, Author provided.

The lab was just about up and running in time for that year’s lunar eclipse. We hadn’t anticipated a mass spawn of so many colonies, so the lab inauguration was a chaos of colour coded collection cups from different sites and parent colonies.

Running a coral spawning site has been the most rewarding experience of my career so far. It is everything that research should be: cutting edge, dynamic and challenging. It’s what I signed up for when I became a marine scientist.

Why the World’s Peatlands are Key to Stopping Climate Change

Montane Peatland, Polblue Swamp, Barrington Tops National Park by Doug Beckers (CC BY-SA 2.0).
Montane Peatland, Polblue Swamp, Barrington Tops National Park by Doug Beckers (CC BY-SA 2.0).

By Gustaf Hugelius, Senior Lecturer, Physical Geography, Stockholm University, World Economic Forum published in collaboration with The Conversation (Public License).

  • Peatlands count for just a few percent of the world’s land, but crucially store almost one-quarter of soil carbon.
  • They play a vital role in regulating the climate, but they’re under threat.
  • A new study from Stockholm University has shown that rising temperatures will mean peatlands will soon start emitting more carbon than they store.
  • Researchers found that by limiting global warming, the worst could be avoided.

Peatlands cover just a few percent of the global land area but they store almost one-quarter of all soil carbon and so play a crucial role in regulating the climate. My colleagues and I have just produced the most accurate map yet of the world’s peatlands – their depth, and how much greenhouse gas they have stored. We found that global warming will soon mean that these peatlands start emitting more carbon than they store.

Peatlands form in areas where waterlogged conditions slow down the decomposition of plant material and peat accumulates. This accumulation of carbon-rich plant remains has been especially strong in northern tundra and taiga areas where they have helped cool the global climate for more than 10,000 years. Now, large areas of perennially frozen (permafrost) peatlands are thawing, causing them to rapidly release the freeze-locked carbon back into the atmosphere as carbon dioxide and methane.

Geoscientists have studied peatlands for a long time. They’ve looked at why some areas have peat but others don’t and they’ve looked at how peatlands work as natural archives through which we can reconstruct what the climate and vegetation was like in the past (or even what human life was life: many well-preserved ancient humans have been found in peat bogs).

Scientists have also long recognised that peatlands are important parts of the global carbon cycle and the climate. When plants grow they absorb CO₂ from the atmosphere and as this material accumulates in the peat, there is less carbon in the atmosphere and therefore the climate will cool in the long-term.

With all this knowledge about how important northern peatlands are, it is perhaps surprising to learn that, until recently, there was no comprehensive map of their depth and how much carbon they store. That is why I led an international group of researchers who put together such a map, which we can use to estimate how the peatlands will respond to global warming. Our work is now published in the journal PNAS.

Peatland data and properties north of 23°N latitude. (A) Estimated areal coverage (in percentage) of peatlands based on the national soil inventory maps and SoilGrids250m. (B) Estimated areal coverage (in percentage) of permafrost in mapped peatlands based on the national soil inventory maps and SoilGrids250m, including a maximum threshold for permafrost at MAAT +1 °C (use the same legend as in A). (C) Spatial distribution of peat core sites with peat depth data (n = 7,111) and peat organic C storage (n = 782) over a map of biome distributions (biomes adapted from ref. 32). Sites with peat N stock data (n = 105) are not shown in the map (see Dataset S6), but are predominantly located in boreal forest and tundra biomes. (D) Sites with peat organic C storage data, with the size of site symbols proportional to measured peat organic C storage, over a map of permafrost zonation (33). (E) Estimated total peatland C storage and (F) permafrost peatland C storage.
Peatland data and properties north of 23°N latitude. (A) Estimated areal coverage (in percentage) of peatlands based on the national soil inventory maps and SoilGrids250m. (B) Estimated areal coverage (in percentage) of permafrost in mapped peatlands based on the national soil inventory maps and SoilGrids250m, including a maximum threshold for permafrost at MAAT +1 °C (use the same legend as in A). (C) Spatial distribution of peat core sites with peat depth data (n = 7,111) and peat organic C storage (n = 782) over a map of biome distributions (biomes adapted from ref. 32). Sites with peat N stock data (n = 105) are not shown in the map (see Dataset S6), but are predominantly located in boreal forest and tundra biomes. (D) Sites with peat organic C storage data, with the size of site symbols proportional to measured peat organic C storage, over a map of permafrost zonation (33). (E) Estimated total peatland C storage and (F) permafrost peatland C storage. Source: Gustaf Hugelius, et al., PNAS (CC BY 4.0).

Peatlands are surprisingly difficult to map as their growth is connected to many different local factors, such as how water drains in the landscape. This meant we had to gather more than 7,000 field observations and use new statistical models based on machine learning to create the maps.

We found that peatlands cover approximately 3.7 million square kilometres. If it were a country, “Peatland” would be slightly larger than India. These peatlands also store approximately 415 gigatons (billion tons) of carbon – as much as is stored in all the world’s forests and trees together.

Almost half of this northern peatland carbon is presently in permafrost, ground that is frozen all year round. But, as the world warms and permafrost thaws, it causes peatlands to collapse and completely changes how they relate to greenhouse gases. Areas that once cooled the atmosphere by storing carbon would instead release more of both CO₂ and methane than they stored. We found that the thaw projected from future global warming will cause releases of greenhouse gas that overshadow and reverse the carbon dioxide sink of all northern peatlands for several hundred years. The exact timing of this switch is still highly uncertain, but it is likely to happen in the later half of this century.

There are regions of very extensive permafrost peatlands in Western Siberia and around Hudson Bay in Canada. These unique environments and ecosystems will be fundamentally changed as the permafrost thaws, and their characteristic mix of frozen peat mounds and small lakes will be replaced by extensive areas of wet fens.

Sampling peatland in Siberia. Gustaf Hugelius, Author provided.
Sampling peatland in Siberia. Gustaf Hugelius, Author provided.

These changes will cause more CO₂ and methane to be released into the atmosphere as the previously frozen peat becomes available for microbes that degrade it. The thaw will also lead to large losses of peat into rivers and streams, which will influence both the food chains and biochemistry of inland waters and the Arctic Ocean.

These new finding further reinforce how urgent it is to rapidly reduce our emissions, as the only way to stop permafrost thaw is to limit global warming. There are no geoengineering solutions that can be deployed in these vast and remote areas. Our results clearly show that more limited global warming of 1.5℃-2℃ would be much less damaging than our current trajectories of 3℃-4℃ degrees or above.