Microplastics in Our Brains?!? What Scientists Have Discovered About Plastic Pollution and Human Health

Comparison of microplastic accumulation in human organs—brain has 10x more than liver and kidney, visualized with sugar in glass jars.
Microplastic Concentrations in Human Organs: Brain samples contained 7–30 times higher MNP concentrations than liver or kidney tissues. Median MNP concentration in the brain (2024 samples): 4,917 µg/g (range: 4,026–5,608 µg/g). Median MNP concentration in the liver (2024 samples): 433 µg/g. Median MNP concentration in the kidney (2024 samples): 404 µg/g.

Why Should We Care?

Plastic pollution is everywhere. Scientists have found microplastics in our food, drinking water, and even the air we breathe. But a new study has revealed something even more alarming—microplastics are accumulating in human brains!

Researchers found that brain samples contained up to 30 times more microplastics than other organs, raising concerns about long-term health risks. Even more shocking, people with dementia had five times the amount of microplastics compared to those without the disease.

What does this mean for our health? Let’s break it down.

What Did Scientists Find?

A team of researchers studied liver, kidney, and brain samples from people who had passed away. Using advanced technology, they found:

  • All organs contained microplastics, but the brain had the highest levels—even more than the liver and kidneys, which naturally filter toxins.

  • The most common type of plastic found was polyethylene (PE)—used in plastic bags, food packaging, and containers.

  • The average microplastic concentration in the brain was 4,917 µg per gram of tissue—compared to 433 µg/g in the liver and 404 µg/g in the kidneys.

To put the quantity of microplastic concentration into perspective, imagine you’re filling three jars with sugar to represent the amount of microplastics in different organs:

  • The kidney jar gets a small teaspoon (404 µg/g).

  • The liver jar gets about the same—just over a teaspoon (433 µg/g).

  • But the brain jar? You dump in more than 10 times that amount—nearly half a cup (4,917 µg/g)!

Now picture that sugar as tiny plastic shards instead of something sweet. Your brain—one of the most protected organs in your body—is absorbing these particles at a dramatically higher rate than the liver or kidneys, which are designed to filter out waste.

While other organs process and remove toxins, the brain seems to be holding onto plastic, potentially for life. Scientists still don’t know exactly what that means for long-term health, but they do know the levels are rising quickly, and that’s a cause for concern.

This is the first time scientists have confirmed that microplastics are accumulating in the human brain—a place that should be well-protected from foreign substances.

Why Is This a Big Deal?

Plastic doesn’t belong in our bodies, let alone inside our brains! Scientists are especially worried because:

Microplastics in the brain may contribute to neurological diseases. In people diagnosed with dementia, microplastic levels were over 26,000 µg per gram of brain tissue—more than five times higher than in non-dementia cases. These tiny plastics were found inside blood vessel walls and immune cells, suggesting they might be affecting brain function.

Microplastics can bypass the brain’s defense system. The blood-brain barrier normally protects the brain from harmful substances. This study suggests nanoplastics (as small as 100–200 nanometers) may be slipping through, raising concerns about how they could impact brain health over time.

While scientists haven’t proven that microplastics cause diseases like dementia, the fact that they are accumulating in the brain demands more research.

How Do Microplastics Get into Our Bodies?

You may not realize it, but we consume and inhale plastic particles every day. Here’s how they might be reaching our brains:

  • Breathing in tiny plastic particles from dust, air pollution, and synthetic fabrics.

  • Eating plastic-contaminated food—studies have found microplastics in seafood, salt, fruits, and vegetables.

  • Drinking bottled water, which contains nearly double the amount of microplastics as tap water.

  • Absorption through the bloodstream—scientists believe that some nanoplastics are small enough to pass through protective barriers in our bodies.

Once inside, these plastics don’t just disappear. They may stay trapped in organs like the liver, kidneys, and brain for years.

Has This Problem Gotten Worse?

Yes—dramatically. Scientists compared brain samples from 2016 and 2024 and found that:

  • Microplastic levels in the brain have increased by nearly 50% in just 8 years.

  • Similar increases were found in the liver and kidney, suggesting we are all being exposed to more plastic than ever before.

  • Older brain samples (1997–2013) contained far fewer microplastics than recent ones, proving this is a rapidly growing problem.

With plastic production and pollution continuing to rise, scientists predict that microplastic exposure will only get worse unless major changes are made.

What Can We Do About It?

While the full health effects of microplastics are still unknown, reducing exposure is a smart move. Here’s how:

  • Use fewer plastics: Switch to reusable bags, glass or metal water bottles, and cloth grocery bags.

  • Filter your water: Some high-quality filters can remove microplastics from drinking water.

  • Limit processed foods: Fresh, whole foods are less likely to contain microplastics than packaged and processed foods.

  • Ventilate your home: Indoor air contains plastic particles from synthetic fabrics and household dust—keeping air clean can reduce inhalation.

  • Support policies to reduce plastic pollution: Push for laws that limit plastic waste and promote better recycling solutions.

Summing Up

Microplastics are inside our brains, and their levels are rising at an alarming rate. Scientists don’t yet know the full impact on human health, but the findings from this study suggest a need for urgent action. While research continues, the best thing we can do is reduce plastic exposure and push for solutions to stop plastic pollution at its source.

The next time you drink from a plastic bottle or open a plastic-wrapped snack, remember—some of that plastic may never leave your body.

Would you like to see a future where our brains stay plastic-free? At activist360, we sure would!


Nihart, A. J., Garcia, M. A., El Hayek, E., Liu, R., Olewine, M., Kingston, J. D., Castillo, E. F., Gullapalli, R. R., Howard, T., Bleske, B., Scott, J., Gonzalez-Estrella, J., Gross, J. M., Spilde, M., Adolphi, N. L., Gallego, D. F., Jarrell, H. S., Dvorscak, G., Zuluaga-Ruiz, M. E., … & Campen, M. J. (2024). Bioaccumulation of microplastics in decedent human brains. Nature Medicine. https://www.nature.com/articles/s41591-024-03453-1?error=cookies_not_supported&code=2faa9a82-f217-47dc-8743-e3dbb30555e5

Are Biodegradable Plastics Truly Eco-Friendly? Unpacking the Facts for a Sustainable Future

Impact Characterization of Biodegradable Plastics
Impact Characterization of Biodegradable Plastics
Credit: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669.


When you hear the word “biodegradable,” what comes to mind? Many of us assume biodegradable plastics are a perfect solution for reducing plastic pollution. However, these materials have complex environmental impacts that aren’t immediately obvious. While they can help reduce certain types of pollution, they also come with hidden trade-offs, including greenhouse gas emissions that contribute to climate change.

In this article, we’ll dive into the environmental impacts of biodegradable plastics, explain how Life Cycle Impact Assessment (LCIA) helps scientists understand their effects, and offer tips for more eco-friendly choices.

What Are Biodegradable Plastics?

Biodegradable plastics are materials designed to break down in the environment faster than traditional plastics. They are typically made from renewable resources, like corn starch or sugarcane, or from fossil-based sources. Common types include plant-based PLA (polylactic acid) and fossil-based PCL (polycaprolactone).

To fully understand their impact, scientists use a process called Life Cycle Impact Assessment (LCIA). LCIA evaluates a product’s environmental footprint across its entire life cycle—from production to disposal. This is essential for understanding biodegradable plastics’ real impact on our planet, including factors like greenhouse gas emissions, water pollution, and waste management challenges.

Benefits of Biodegradable Plastics in Reducing Microplastic Pollution

One of the most significant benefits of biodegradable plastics is their potential to reduce microplastic pollution. Microplastics are tiny plastic fragments that pollute our oceans, rivers, and even our food and water. Because they don’t easily decompose, they accumulate in ecosystems and can harm wildlife and human health.

Biodegradable plastics offer a promising alternative. When they break down properly, they are less likely to form these harmful microplastics. Scientists assess this potential benefit through a measure in LCIA called aquatic ecotoxicity, which looks at how materials impact aquatic life. Biodegradable plastics typically score lower in aquatic ecotoxicity than traditional plastics because they break down more completely, reducing the risk of long-term pollution.

Think of biodegradable plastics like “biodegradable litter.” If disposed of properly, they disappear without leaving a trace, unlike conventional plastics that break into microplastics and linger in the environment for years.

The schematic diagram of the LCA methodology for biodegradable plastics
Impact Characterization of Biodegradable Plastics
Credit: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669, Figure 1.


Hidden Costs of Biodegradable Plastics: Greenhouse Gas Emissions

While biodegradable plastics can reduce visible pollution, they aren’t without environmental costs. As these plastics break down, particularly in natural environments like rivers or forests, they can release greenhouse gases (GHGs) like methane—a potent contributor to climate change.

Here’s a surprising statistic: when PCL, a common biodegradable plastic, breaks down in a natural setting, it can emit up to 16.3 kilograms of CO₂-equivalent per kilogram of plastic. This emission rate is about 16 times higher than what it would release in an industrial composting facility.

Scientists use Global Warming Potential (GWP) within LCIA to measure how much a material contributes to climate change. For biodegradable plastics, scientists often use dynamic GWP calculations, which track greenhouse gas emissions over time rather than assuming a constant rate. This approach reveals that biodegradable plastics can emit GHGs in bursts as they break down, especially under anaerobic (low-oxygen) conditions in natural environments.

In some scenarios, biodegradable plastics that aren’t properly managed may actually emit more greenhouse gases than traditional plastics.

Role of Waste Management in Reducing Environmental Impact

The environmental impact of biodegradable plastics depends heavily on how they are disposed of. Ideally, they should be processed in industrial composting facilities, where conditions like temperature and oxygen are carefully controlled to allow these plastics to break down quickly and with minimal greenhouse gas emissions.

However, when biodegradable plastics end up in natural environments, such as lakes or soil, they break down under uncontrolled conditions, leading to increased emissions.

Think of biodegradable plastics as “biodegradable litter.” Just as litter remains litter if tossed on the ground, biodegradable plastics can still pollute if not disposed of correctly.

This brings us to the End-of-Life (EoL) Impact stage in LCIA. LCIA considers the full “end-of-life” cycle of a product to evaluate its environmental footprint based on where it ends up. Without the proper disposal infrastructure, biodegradable plastics may add to environmental pollution rather than reduce it.

What the Future Holds for Biodegradable Plastics

As scientists learn more about the impacts of biodegradable plastics, they’re working to design materials that minimize environmental costs. Using tools like LCIA, researchers can adjust physical properties—such as density, degradation rates, and carbon content—so that biodegradable plastics break down with lower greenhouse gas emissions and reduced aquatic toxicity.

LCIA helps scientists make informed design choices that balance eco-friendliness with practicality. For instance, certain plastics might be designed with an optimized Specific Surface Degradation Rate (SSDR), which controls the rate at which they break down in nature. This helps reduce greenhouse gas emissions while ensuring the plastic still decomposes efficiently.

Think of it like a “recipe” for future plastics. Each ingredient—density, degradation rate, carbon content—needs to be carefully balanced to create a plastic that’s both sustainable and functional. Just as a recipe requires precision for the best result, so does the design of biodegradable plastics.

With LCIA as a guide, scientists and manufacturers can develop low-carbon biodegradable plastics that help protect the planet by reducing pollution and managing emissions.

What Can We Do to Make a Difference?

As consumers, we have a role to play in reducing plastic pollution and supporting sustainable materials. Here are some ways we can contribute:

  • Mindful Consumption: Choose products with minimal packaging and support companies that use sustainable materials.

  • Proper Disposal: Make sure biodegradable plastics go into the correct waste streams. Check local composting and recycling guidelines to see if your area has facilities for biodegradable plastics.

  • Spread the Word: Share this information with friends and family. Understanding the pros and cons of biodegradable plastics helps everyone make more informed, eco-friendly choices.

Summing Up

Biodegradable plastics are a promising step toward reducing plastic pollution, but they also come with their own environmental costs, especially when they end up in natural environments. Through Life Cycle Impact Assessment (LCIA), scientists help us understand these trade-offs, from reducing microplastic pollution to the hidden impacts of greenhouse gas emissions.

Ultimately, while biodegradable plastics offer benefits, they are only part of the solution. Proper disposal methods, innovative material design, and mindful consumer choices are essential to building a sustainable future for our planet.


Source: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669. https://www.nature.com/articles/s44286-024-00127-0?error=cookies_not_supported&code=7bf86283-d7fa-4b83-9db4-955d0285c7cf

Understanding the Global Plastic Pollution Crisis

Overview of Plastic Pollution and the Role of the Global Plastics Treaty

Plastic pollution is one of the biggest challenges our world faces today. It affects our oceans, rivers, land, and even the air we breathe. Every year, millions of tons of plastic waste end up in the environment, creating serious problems for both people and nature. Let’s dive into the key facts about plastic pollution and the steps being taken to address it through the Global Plastics Treaty.

What is Plastic Pollution?

Plastic pollution happens when plastic waste escapes from managed systems like landfills and enters the environment. When this waste is no longer controlled, it becomes a major threat to ecosystems. Plastic pollution can be broken down into two types:

  • Macroplastics: These are larger pieces of plastic (greater than 5mm) like bottles, bags, and other visible plastic items.

  • Microplastics: Tiny plastic particles (smaller than 5mm) that often come from the breakdown of larger plastics.

How Much Plastic Waste is There?

In 2020, around 52.1 million metric tons of macroplastic waste entered the unmanaged environment. This is about 21% of all the plastic waste produced by cities and towns, also known as municipal plastic waste. Municipal plastic waste comes from homes, businesses, schools, and public spaces, according to a global emissions inventory study published in Nature​ (s41586-024-07758-6).

What is the Unmanaged Environment?

The “unmanaged environment” is any place where plastic waste is no longer being controlled. This includes uncollected waste, litter, and open dumping sites. Once plastic enters this environment, it can move freely and cause harm to wildlife, ecosystems, and even human health.

Why Does Open Burning Happen?

In many parts of the world, especially in developing countries, formal waste collection services are either unavailable or not sufficient. As a result, people resort to open burning of plastic waste as a way to get rid of it. Open burning is harmful because it releases dangerous chemicals into the air and contributes significantly to pollution.

Global North vs. Global South: Who’s Responsible?

When we talk about plastic pollution, the world is often divided into the Global North and the Global South:

  • The Global North includes wealthier, high-income countries like the United States, Western Europe, and Japan. These countries have better waste management systems and tend to have less uncollected waste.

  • The Global South includes developing countries in regions like Africa, Latin America, and Southeast Asia. These countries struggle with waste collection, and uncollected plastic waste is a major source of pollution.

Plastic Pollution Hotspots

Certain regions are considered plastic pollution hotspots due to their high levels of unmanaged plastic waste:

  • Southern Asia, Sub-Saharan Africa, and Southeast Asia have the highest levels of plastic pollution.

  • India is the largest global emitter, contributing nearly one-fifth of all plastic waste emissions, followed by countries like Nigeria and Indonesia.

  • In contrast, the Global North has lower levels of pollution because of better waste management practices, though littering is still a problem.

What is the Global Plastics Treaty?

The Global Plastics Treaty is a global agreement being negotiated under the United Nations Environment Programme (UNEP) to tackle plastic pollution. The treaty aims to reduce plastic waste, improve recycling, and promote better waste management worldwide. This treaty brings together representatives from governments, industries, scientists, and environmental groups to find solutions.

Negotiations began in 2023. The next Intergovernmental Negotiating Committee (INC) meeting for the Global Plastics Treaty is scheduled for November 25–December 1, 2024 in Busan, South Korea. This meeting is called INC-5 and is expected to finalize the text of the treaty.

Why Does This Matter?

Plastic pollution has lasting effects on the environment and human health. Once plastic waste enters the environment, it can break down into microplastics, which are even harder to clean up. Without immediate action, plastic waste will continue to harm ecosystems, wildlife, and people.

Call to Action

Plastic pollution is a global issue that needs urgent attention. While some countries have made progress in managing their plastic waste, others face major challenges. The Global Plastics Treaty offers hope for coordinated global action to reduce plastic pollution and protect our planet for future generations. Tackling uncollected waste and improving waste management systems, especially in developing countries, will be key steps toward solving this crisis.

By understanding the sources and impacts of plastic pollution, we can all play a part in making our world a cleaner, healthier place.