Pesticide use and climate crisis locked in ‘vicious cycle’ backed by polluting industries

Tractor spraying on crops. Photo by Ferencz Istvan, Pexels.
Tractor spraying on crops. Photo by Ferencz Istvan, Pexels.

While agrochemical corporations promote “flawed solutions,” said one advocate, “we need deeper, transformative approaches to actually solve the root problems of our broken food system.”

By Kenny Stancil, Common Dreams

Even though synthetic pesticides—the majority of which are derived from fossil fuels—contribute significantly to planet-heating pollution and increase the vulnerability of food systems, industrial agriculture interests continue to recklessly portray further pesticide use as a sensible response to the climate emergency’s worsening impacts.

That’s according to a recent report published by the Pesticide Action Network North America (PANNA), which details how agrochemical corporations exacerbate the climate crisis by refusing to admit that pesticides are part of the problem and instead promoting “false” solutions that enable them to keep peddling their highly profitable petroleum-based products.

The January report outlines how policymakers can help mitigate the climate crisis and build just and sustainable food systems by setting targets to drastically curb pesticide use, supporting agroecological farming practices, and protecting the rights of low-income individuals, disproportionately people of color, who are most harmed by pesticides, including farmworkers and residents of areas where the toxic substances are produced and applied.

“Governments are investing billions of dollars to address climate change, but these investments will fall woefully short unless they incorporate pesticide use reduction strategies and promotion of agroecological growing practices.”

“Reductions in pesticide use and the adoption of agroecology would decrease greenhouse gas emissions, while also reducing acute poisonings, long-term diseases like cancer, and other health impacts that rural communities face from pesticide exposure,” Nayamin Martinez, executive director of Central California Environmental Justice Network, said in a statement.

As the report explains: “Pesticides contribute to climate change throughout their lifecycle via manufacturing, packaging, transportation, application, and even through environmental degradation and disposal. Importantly, 99% of all synthetic chemicals—including pesticides—are derived from fossil fuels, and several oil and gas companies play major roles in developing pesticide ingredients.”

Pesticides, the offspring of a World War II-era marriage of Big Ag and Big Oil, help drive global warming to a greater extent than many realize, as the authors document:

Other chemical inputs in agriculture, such as nitrogen fertilizer, have rightly received significant attention due to their contributions to greenhouse gas emissions. Yet research has shown that the manufacture of one kilogram of pesticide requires, on average, about 10 times more energy than one kilogram of nitrogen fertilizer. Like nitrogen fertilizers, pesticides can also release greenhouse gas emissions after their application, with fumigant pesticides shown to increase nitrous oxide production in soils seven- to eight-fold. Many pesticides also lead to the production of ground-level ozone, a greenhouse gas harmful to both humans and plants. Some pesticides, such as sulfuryl fluoride, are themselves powerful greenhouse gases, having nearly 5,000 times the potency of carbon dioxide.

Despite mounting evidence that pesticides are helping to accelerate planetary heating, “climate change impacts are expected to lead to increases in pesticide use, creating a vicious cycle between chemical dependency and intensifying climate change,” the report notes. “Research shows that declining efficacy of pesticides, coupled with increases in pest pressures associated with a changing climate, will likely increase synthetic pesticide use in conventional agriculture. An increase in pesticide use will lead to greater resistance to herbicides and insecticides in weeds and insect pests, while also harming public health and the environment.”

That agricultural production is a substantial contributor to greenhouse gas (GHG) pollution is increasingly acknowledged, but the role played by pesticides is “infrequently addressed” and “many proposed solutions would not result in meaningful GHG emission reductions,” says the report.

It continues:

An example of a false solution is precision agriculture, which promises to reduce the use of petroleum-derived pesticides and fertilizers by using computer-aided technologies to more accurately determine need (pest presence) and then more accurately apply pesticides to intended targets. However, precision agriculture maintains a system dependent upon chemical- and energy-intensive technologies and materials, while diverting attention from and investment in more effective climate-friendly strategies in agriculture that have additional social and public health co-benefits, such as agroecology. Precision agriculture also increases the power and control of agrochemical companies, many of which own the precision agriculture platforms and the data inputted by farmers.

Another flawed solution, carbon markets, allows agribusinesses or farmers to sell carbon credits to corporations to “offset” continued greenhouse gas emissions—perpetuating reliance on fossil fuels. Carbon markets have a poor track record in terms of long-term climate mitigation, and have been shown to worsen economic and racial disparities.

Co-author Asha Sharma, organizing co-director at PANNA, said that “our new report reveals how oil and gas companies and pesticide manufacturers have followed a similar playbook—strategically promoting flawed solutions to the climate crisis, like carbon capture and storage and new digital agriculture tools, which in reality offer minimal climate benefits.”

“Corporations tout these novel technologies to protect their reputation, while they continue to profit from fossil fuels,” said Sharma. “We need deeper, transformative approaches to actually solve the root problems of our broken food system.”

The report makes the case for agroecology, which it defines as “a way of farming rooted in social justice that focuses on working with nature rather than against it.”

Agroecology “relies on ecological principles for pest management, minimizing the use of synthetic pesticides, while prioritizing the decision-making power of farmers and agricultural workers,” the report notes, adding that such an approach improves “the resilience of our agricultural systems to better withstand climate change impacts.”

The report makes three key recommendations for policymakers:

  • Establish measurable goals in climate policies to reduce synthetic pesticide use in agriculture;
  • Promote the transition to biodiverse, agroecological food and farming systems, such as by establishing and funding programs that provide increased technical assistance and incentives to farmers to adopt or continue these farming practices; and
  • In line with international law, adopt regulations that uphold and promote the rights of groups most impacted by synthetic pesticide use.

“Transitioning our agricultural systems to those that uplift ecological and social justice principles will not only help mitigate climate change, but also reduce the negative health impacts of industrial agriculture,” says the report. “While the work toward future policy and practice change continues, we can collectively support the advocacy work of impacted communities and organizations fighting for more equitable and sustainable food and farming systems right now.”

Co-author Margaret Reeves, a senior scientist at PANNA, argued that “governments are investing billions of dollars to address climate change, but these investments will fall woefully short unless they incorporate pesticide use reduction strategies and promotion of agroecological growing practices.”

‘Silent Spring’ 60 years on: 4 essential reads on pesticides and the environment

Photo by Laura Arias, Pexels
Man Fumigating the Plants Laura Arias, Pexels

By Jennifer Weeks, The Conversation (US CC BY-NC-ND 4.0)

In 1962 environmental scientist Rachel Carson published “Silent Spring,” a bestselling book that asserted that overuse of pesticides was harming the environment and threatening human health. Carson did not call for banning DDT, the most widely used pesticide at that time, but she argued for using it and similar products much more selectively and paying attention to their effects on nontargeted species.

“Silent Spring” is widely viewed as an inspiration for the modern environmental movement. These articles from The Conversation’s archive spotlight ongoing questions about pesticides and their effects.

1. Against absolutes

Although the chemical industry attacked “Silent Spring” as anti-science and anti-progress, Carson believed that chemicals had their place in agriculture. She “favored a restrained use of pesticides, but not a complete elimination, and did not oppose judicious use of manufactured fertilizers,” writes Harvard University sustainability scholar Robert Paarlberg.

Rachel Carson. The author of Silent Spring (1962), the book that forced the nation to confront the toll of pesticides on the environment, Carson began her career with the U.S. Fish and Wildlife Service. A refuge on the southern coast of Maine now bears her name. (USFWS) (CC BY 2.0)
Rachel Carson. The author of Silent Spring (1962), the book that forced the nation to confront the toll of pesticides on the environment, Carson began her career with the U.S. Fish and Wildlife Service. A refuge on the southern coast of Maine now bears her name. (USFWS) (CC BY 2.0)

This approach put Carson at odds with the fledgling organic movement, which totally rejected synthetic pesticides and fertilizers. Early organic advocates claimed Carson as a supporter nonetheless, but Carson kept them at arm’s length. “The organic farming movement was suspect in Carson’s eyes because most of its early leaders were not scientists,” Paarlberg observes.

This divergence has echoes today in debates about whether organic production or steady improvements in conventional farming have more potential to feed a growing world population.

2. Concerned cropdusters

Well before “Silent Spring” was published, a crop-dusting industry developed on the Great Plains in the years after World War II to apply newly commercialized pesticides. “Chemical companies made broad promises about these ‘miracle’ products, with little discussion of risks. But pilots and scientists took a much more cautious approach,” recounts University of Nebraska-Kearney historian David Vail.

As Vail’s research shows, many crop-dusting pilots and university agricultural scientists were well aware of how little they knew about how these new tools actually worked. They attended conferences, debated practices for applying pesticides and organized flight schools that taught agricultural science along with spraying techniques. When “Silent Spring” was published, many of these practitioners pushed back, arguing that they had developed strategies for managing pesticide risks.

Archival footage of crop-dusters spraying in California in the 1950s.

Today aerial spraying is still practiced on the Great Plains, but it’s also clear that insects and weeds rapidly evolve resistance to every new generation of pesticides, trapping farmers on what Vail calls “a chemical-pest treadmill.” Carson anticipated this effect in “Silent Spring,” and called for more research into alternative pest control methods – an approach that has become mainstream today.

3. The osprey’s crash and recovery

In “Silent Spring,” Carson described in detail how chlorinated hydrocarbon pesticides persisted in the environment long after they were sprayed, rising through the food chain and building up in the bodies of predators. Populations of fish-eating raptors, such as bald eagles and ospreys, were ravaged by these chemicals, which thinned the shells of the birds’ eggs so that they broke in the nest before they could hatch.

“Up to 1950, ospreys were one of the most widespread and abundant hawks in North America,” writes Cornell University research associate Alan Poole. “By the mid-1960s, the number of ospreys breeding along the Atlantic coast between New York City and Boston had fallen by 90%.”

Bans on DDT and other highly persistent pesticides opened the door to recovery. But by the 1970s, many former osprey nesting sites had been developed. To compensate, concerned naturalists built nesting poles along shorelines. Ospreys also learned to colonize light posts, cell towers and other human-made structures.

Wildlife monitors band young ospreys in New York City’s Jamaica Bay to monitor their lives and movements.

Today, “Along the shores of the Chesapeake Bay, nearly 20,000 ospreys now arrive to nest each spring – the largest concentration of breeding pairs in the world. Two-thirds of them nest on buoys and channel markers maintained by the U.S. Coast Guard, who have become de facto osprey guardians,” writes Poole. “To have robust numbers of this species back again is a reward for all who value wild animals, and a reminder of how nature can rebound if we address the key threats.”

4. New concerns

Pesticide application techniques have become much more targeted in the 60 years since “Silent Spring” was published. One prominent example: crop seeds coated with neonicotinoids, the world’s most widely used class of insecticides. Coating the seeds makes it possible to introduce pesticides into the environment at the point where they are needed, without spraying a drop.

But a growing body of research indicates that even though coated seeds are highly targeted, much of their pesticide load washes off into nearby streams and lakes. “Studies show that neonicotinoids are poisoning and killing aquatic invertebrates that are vital food sources for fish, birds and other wildlife,” writes Penn State entomologist John Tooker.

In multiple studies, Tooker and colleagues have found that using coated seeds reduces populations of beneficial insects that prey on crop-destroying pests like slugs.

“As I see it, neonicotinoids can provide good value in controlling critical pest species, particularly in vegetable and fruit production, and managing invasive species like the spotted lanternfly. However, I believe the time has come to rein in their use as seed coatings in field crops like corn and soybeans, where they are providing little benefit and where the scale of their use is causing the most critical environmental problems,” Tooker writes.

UN report: The world’s farms stretched to ‘a breaking point’

Photo by Quang Nguyen Vinh from Pexels
Photo by Quang Nguyen Vinh from Pexels

The world’s climate-stressed and pollution-degraded farming and agricultural system must shift quickly to sustainable practices to feed an additional 2 billion mouths expected by 2050, a new United Nations report finds.

By Dana Nuccitelli, Yale Climate Connections (CC BY-NC-ND 2.5)

Almost 10% of the 8 billion people on earth are already undernourished with 3 billion lacking healthy diets, and the land and water resources farmers rely on stressed to “a breaking point.” And by 2050 there will be 2 billion more mouths to feed, warns a new report from the United Nations Food and Agriculture Organization (FAO).

For now, farmers have been able to boost agricultural productivity by irrigating more land and applying heavier doses of fertilizer and pesticides. But the report says these practices are not sustainable: They have eroded and degraded soil while polluting and depleting water supplies and shrinking the world’s forests. The FAO report discusses some important climate change impacts, such as changing distribution of rainfall, the suitability of land for certain crops, the spread of insects and other pests, and shorter growing seasons in regions affected by more intense droughts. While not the sole source of obstacles facing global agriculture, the report makes clear that climate change is further stressing agricultural systems and amplifying global food production challenges.

The report also offers hope that the problems are solvable: Water degradation can be reversed by turning to smart planning and coordination of sustainable farming practices and by deploying new innovative technologies. More sustainable agriculture can also help fight climate change: For instance, the report notes that wiser use of soils can help sequester some of the greenhouse gasses currently emitted by agricultural activities. 

Drastic changes in climate will require regions to adjust the crops they grow. For example, the report predicts that much cereal production will probably have to move north, to Canada and northern Eurasia. Brazil and northern Africa may have a harder time growing coffee, but it may get easier in eastern Africa. A changing climate “may bring opportunities for multiple rainfed cropping, particularly in the tropics and subtropics.” And for areas “where the climate becomes marginal for current staple and niche crops, there are alternative annual and perennial tree crops, livestock, and soil and water management options available.”

The report recommends seed and germoplasm exchanges globally and among regions, and investments to develop crops that can withstand changes in temperature, salinity, wind, and evaporation.

The changes will not be easy, the report says, but they may be necessary to avoid widespread hunger and other catastrophes.

Extensive land and water degradation

Over the past 20 years, the global population has risen by more than 25% from just over 6 billion to nearly 8 billion people. The amount of land used to grow crops has increased by just 4% over that time, as farmers have been able to meet the growing demand for food by dramatically increasing the productivity per acre of agricultural land. They’ve done so, for example, by increasing use of diesel-fueled machinery, fertilizer, and pesticides.

But these practices have come at a price. “Human-induced degradation affects 34 percent (1,660 million hectares) of agricultural land,” the FAO reports. “The treatment of soils with inorganic fertilizers to increase or sustain yields has had significant adverse effects on soil health, and has contributed to freshwater pollution induced by run-off and drainage.”

This degradation is especially extensive on irrigated farmland. Irrigation has been critical for meeting food demand because it produces two to three times as much food per acre as does rain-fed farmland. But irrigation also increases runoff of fertilizers and pesticides that can contaminate soil and groundwater.

The FAO reports also that globally, agriculture accounts for 72% of all surface and groundwater withdrawals, mainly for irrigation, which is depleting groundwater aquifers in many regions. Global groundwater withdrawals for irrigated agriculture increased by about 20% over the past decade alone.

Similarly, the quality of 13% of global soil, including 34% of agricultural land, has been degraded. This degradation has been caused by factors such as excessive fertilizer use, livestock overgrazing causing soil compaction and erosion, deforestation, and decreasing water availability.


Deforestation trends offer one relatively bright spot in the FAO report. The global forested area has declined by about 1% (47 million hectares) over the past decade, but that is a significant improvement from the nearly 2% decline (78 million hectares) in the 1990s. And in the November 2021 international climate negotiations in Glasgow, 141 countries, covering 91% of global forested area, agreed to halt and reverse forest loss and land degradation by 2030. It remains to be seen, of course, how many reach those commitments.

Climate change is worsening food system breakdowns

Climate change exacerbates farmers’ challenges by making weather more extreme and less reliable. Extreme heat can stress crops and farm workers while increasing evaporation of water from soil and transpiration from plants, thus amplifying agricultural water demands. Here too, it’s not all bad news: Agricultural productivity is expected to increase in regions that are currently relatively cold, but decrease in places that are hotter and drier, especially as climate change exacerbates droughts.

As with others, farmers will need to adapt to the changing climate, and making those adaptations can be expensive. For example, as the primary or sole producer of many of the country’s fruits, vegetables, and nuts, California effectively acts as America’s garden. But climate change is exacerbating droughts and water shortages in the state, and farmers are struggling to adapt. About 80% of all almonds in the world are grown in California, generating $6 billion in annual revenue, but almonds are a very water-intensive crop. As a result, some farmers have been forced to tear up their lucrative almond orchards. It’s a stark reminder that “adaptation” can sound easy on paper, but in practice can sometimes be painful and costly.

Farmers and planners will need to adapt

Adaptation will nevertheless be necessary in the face of an anticipated 50% increase in food demand by 2050 (including a doubling in South Asia and sub-Saharan Africa), extensive land and water quality degradation, and a changing climate. The FAO report recommends four action areas to continue to meet rising global food demand.

  • First, adopting inclusive land and water governance through improved land-use planning to guide land and water allocation and promote sustainable resources management.

  • Second, implementing integrated solutions at scale, for example by helping farmers use available resources more efficiently while minimizing the associated adverse environmental impacts and also building resilience to climate change.

  • Third, embracing innovative technologies and management like remote sensing services; opening access to data and information on crops, natural resources and climatic conditions; and improving rainwater capture and increasing soil moisture retention.

  • Fourth, investing in long-term sustainable land, soil, and water management; in restoring degraded ecosystems; and in data and information management for farmers.

Fortunately, sustainable agricultural practices can also do double duty as climate solutions. The FAO reports that 31% of global greenhouse gas emissions come from agri-food systems. Sustainable farming practices like regenerative agriculture can require less diesel-fueled machinery and less reliance on soil- and water-polluting pesticides while increasing the carbon stored in farmed soils.

Solving these multiple problems will require planning and coordination, the FAO writes in the report, and “data collection needs to improve.” Again, a bright side: The technology to improve data collection already exists, and advances in agricultural research have also put other solutions within reach. What is needed now is for policymakers and planners to coordinate work with farmers to adopt more sustainable practices and adapt more quickly to the changing climate. So, while the food system is currently at a “breaking point,” these more sustainable solutions are all within reach.