Are Biodegradable Plastics Truly Eco-Friendly? Unpacking the Facts for a Sustainable Future

Impact Characterization of Biodegradable Plastics
Impact Characterization of Biodegradable Plastics
Credit: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669.


When you hear the word “biodegradable,” what comes to mind? Many of us assume biodegradable plastics are a perfect solution for reducing plastic pollution. However, these materials have complex environmental impacts that aren’t immediately obvious. While they can help reduce certain types of pollution, they also come with hidden trade-offs, including greenhouse gas emissions that contribute to climate change.

In this article, we’ll dive into the environmental impacts of biodegradable plastics, explain how Life Cycle Impact Assessment (LCIA) helps scientists understand their effects, and offer tips for more eco-friendly choices.

What Are Biodegradable Plastics?

Biodegradable plastics are materials designed to break down in the environment faster than traditional plastics. They are typically made from renewable resources, like corn starch or sugarcane, or from fossil-based sources. Common types include plant-based PLA (polylactic acid) and fossil-based PCL (polycaprolactone).

To fully understand their impact, scientists use a process called Life Cycle Impact Assessment (LCIA). LCIA evaluates a product’s environmental footprint across its entire life cycle—from production to disposal. This is essential for understanding biodegradable plastics’ real impact on our planet, including factors like greenhouse gas emissions, water pollution, and waste management challenges.

Benefits of Biodegradable Plastics in Reducing Microplastic Pollution

One of the most significant benefits of biodegradable plastics is their potential to reduce microplastic pollution. Microplastics are tiny plastic fragments that pollute our oceans, rivers, and even our food and water. Because they don’t easily decompose, they accumulate in ecosystems and can harm wildlife and human health.

Biodegradable plastics offer a promising alternative. When they break down properly, they are less likely to form these harmful microplastics. Scientists assess this potential benefit through a measure in LCIA called aquatic ecotoxicity, which looks at how materials impact aquatic life. Biodegradable plastics typically score lower in aquatic ecotoxicity than traditional plastics because they break down more completely, reducing the risk of long-term pollution.

Think of biodegradable plastics like “biodegradable litter.” If disposed of properly, they disappear without leaving a trace, unlike conventional plastics that break into microplastics and linger in the environment for years.

The schematic diagram of the LCA methodology for biodegradable plastics
Impact Characterization of Biodegradable Plastics
Credit: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669, Figure 1.


Hidden Costs of Biodegradable Plastics: Greenhouse Gas Emissions

While biodegradable plastics can reduce visible pollution, they aren’t without environmental costs. As these plastics break down, particularly in natural environments like rivers or forests, they can release greenhouse gases (GHGs) like methane—a potent contributor to climate change.

Here’s a surprising statistic: when PCL, a common biodegradable plastic, breaks down in a natural setting, it can emit up to 16.3 kilograms of CO₂-equivalent per kilogram of plastic. This emission rate is about 16 times higher than what it would release in an industrial composting facility.

Scientists use Global Warming Potential (GWP) within LCIA to measure how much a material contributes to climate change. For biodegradable plastics, scientists often use dynamic GWP calculations, which track greenhouse gas emissions over time rather than assuming a constant rate. This approach reveals that biodegradable plastics can emit GHGs in bursts as they break down, especially under anaerobic (low-oxygen) conditions in natural environments.

In some scenarios, biodegradable plastics that aren’t properly managed may actually emit more greenhouse gases than traditional plastics.

Role of Waste Management in Reducing Environmental Impact

The environmental impact of biodegradable plastics depends heavily on how they are disposed of. Ideally, they should be processed in industrial composting facilities, where conditions like temperature and oxygen are carefully controlled to allow these plastics to break down quickly and with minimal greenhouse gas emissions.

However, when biodegradable plastics end up in natural environments, such as lakes or soil, they break down under uncontrolled conditions, leading to increased emissions.

Think of biodegradable plastics as “biodegradable litter.” Just as litter remains litter if tossed on the ground, biodegradable plastics can still pollute if not disposed of correctly.

This brings us to the End-of-Life (EoL) Impact stage in LCIA. LCIA considers the full “end-of-life” cycle of a product to evaluate its environmental footprint based on where it ends up. Without the proper disposal infrastructure, biodegradable plastics may add to environmental pollution rather than reduce it.

What the Future Holds for Biodegradable Plastics

As scientists learn more about the impacts of biodegradable plastics, they’re working to design materials that minimize environmental costs. Using tools like LCIA, researchers can adjust physical properties—such as density, degradation rates, and carbon content—so that biodegradable plastics break down with lower greenhouse gas emissions and reduced aquatic toxicity.

LCIA helps scientists make informed design choices that balance eco-friendliness with practicality. For instance, certain plastics might be designed with an optimized Specific Surface Degradation Rate (SSDR), which controls the rate at which they break down in nature. This helps reduce greenhouse gas emissions while ensuring the plastic still decomposes efficiently.

Think of it like a “recipe” for future plastics. Each ingredient—density, degradation rate, carbon content—needs to be carefully balanced to create a plastic that’s both sustainable and functional. Just as a recipe requires precision for the best result, so does the design of biodegradable plastics.

With LCIA as a guide, scientists and manufacturers can develop low-carbon biodegradable plastics that help protect the planet by reducing pollution and managing emissions.

What Can We Do to Make a Difference?

As consumers, we have a role to play in reducing plastic pollution and supporting sustainable materials. Here are some ways we can contribute:

  • Mindful Consumption: Choose products with minimal packaging and support companies that use sustainable materials.

  • Proper Disposal: Make sure biodegradable plastics go into the correct waste streams. Check local composting and recycling guidelines to see if your area has facilities for biodegradable plastics.

  • Spread the Word: Share this information with friends and family. Understanding the pros and cons of biodegradable plastics helps everyone make more informed, eco-friendly choices.

Summing Up

Biodegradable plastics are a promising step toward reducing plastic pollution, but they also come with their own environmental costs, especially when they end up in natural environments. Through Life Cycle Impact Assessment (LCIA), scientists help us understand these trade-offs, from reducing microplastic pollution to the hidden impacts of greenhouse gas emissions.

Ultimately, while biodegradable plastics offer benefits, they are only part of the solution. Proper disposal methods, innovative material design, and mindful consumer choices are essential to building a sustainable future for our planet.


Source: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669. https://www.nature.com/articles/s44286-024-00127-0?error=cookies_not_supported&code=30edf270-5181-43e1-ad25-342ee6f78155

Understanding the Global Plastic Pollution Crisis

Overview of Plastic Pollution and the Role of the Global Plastics Treaty

Plastic pollution is one of the biggest challenges our world faces today. It affects our oceans, rivers, land, and even the air we breathe. Every year, millions of tons of plastic waste end up in the environment, creating serious problems for both people and nature. Let’s dive into the key facts about plastic pollution and the steps being taken to address it through the Global Plastics Treaty.

What is Plastic Pollution?

Plastic pollution happens when plastic waste escapes from managed systems like landfills and enters the environment. When this waste is no longer controlled, it becomes a major threat to ecosystems. Plastic pollution can be broken down into two types:

  • Macroplastics: These are larger pieces of plastic (greater than 5mm) like bottles, bags, and other visible plastic items.

  • Microplastics: Tiny plastic particles (smaller than 5mm) that often come from the breakdown of larger plastics.

How Much Plastic Waste is There?

In 2020, around 52.1 million metric tons of macroplastic waste entered the unmanaged environment. This is about 21% of all the plastic waste produced by cities and towns, also known as municipal plastic waste. Municipal plastic waste comes from homes, businesses, schools, and public spaces, according to a global emissions inventory study published in Nature​ (s41586-024-07758-6).

What is the Unmanaged Environment?

The “unmanaged environment” is any place where plastic waste is no longer being controlled. This includes uncollected waste, litter, and open dumping sites. Once plastic enters this environment, it can move freely and cause harm to wildlife, ecosystems, and even human health.

Why Does Open Burning Happen?

In many parts of the world, especially in developing countries, formal waste collection services are either unavailable or not sufficient. As a result, people resort to open burning of plastic waste as a way to get rid of it. Open burning is harmful because it releases dangerous chemicals into the air and contributes significantly to pollution.

Global North vs. Global South: Who’s Responsible?

When we talk about plastic pollution, the world is often divided into the Global North and the Global South:

  • The Global North includes wealthier, high-income countries like the United States, Western Europe, and Japan. These countries have better waste management systems and tend to have less uncollected waste.

  • The Global South includes developing countries in regions like Africa, Latin America, and Southeast Asia. These countries struggle with waste collection, and uncollected plastic waste is a major source of pollution.

Plastic Pollution Hotspots

Certain regions are considered plastic pollution hotspots due to their high levels of unmanaged plastic waste:

  • Southern Asia, Sub-Saharan Africa, and Southeast Asia have the highest levels of plastic pollution.

  • India is the largest global emitter, contributing nearly one-fifth of all plastic waste emissions, followed by countries like Nigeria and Indonesia.

  • In contrast, the Global North has lower levels of pollution because of better waste management practices, though littering is still a problem.

What is the Global Plastics Treaty?

The Global Plastics Treaty is a global agreement being negotiated under the United Nations Environment Programme (UNEP) to tackle plastic pollution. The treaty aims to reduce plastic waste, improve recycling, and promote better waste management worldwide. This treaty brings together representatives from governments, industries, scientists, and environmental groups to find solutions.

Negotiations began in 2023. The next Intergovernmental Negotiating Committee (INC) meeting for the Global Plastics Treaty is scheduled for November 25–December 1, 2024 in Busan, South Korea. This meeting is called INC-5 and is expected to finalize the text of the treaty.

Why Does This Matter?

Plastic pollution has lasting effects on the environment and human health. Once plastic waste enters the environment, it can break down into microplastics, which are even harder to clean up. Without immediate action, plastic waste will continue to harm ecosystems, wildlife, and people.

Call to Action

Plastic pollution is a global issue that needs urgent attention. While some countries have made progress in managing their plastic waste, others face major challenges. The Global Plastics Treaty offers hope for coordinated global action to reduce plastic pollution and protect our planet for future generations. Tackling uncollected waste and improving waste management systems, especially in developing countries, will be key steps toward solving this crisis.

By understanding the sources and impacts of plastic pollution, we can all play a part in making our world a cleaner, healthier place.

Opinion: Big oil goes all in on toxic plastic

Great at creating problems for humanity, fossil fuel giants increase oil demand in the form of plastic.

By Maya Rommwatt, Common Dreams (CC BY-NC-ND 3.0).

Oil companies are high on the hog again, with record high gas prices fueling record profits–profits so high they’re even catching the attention of Democrats in Congress. And of course, they’re using the profits to buy back shares so their shareholders will benefit from higher stock prices.

Maybe all that money is going to their heads because only a handful of years have passed since we learned Exxon and many other big oil companies have known since the seventies exactly how their dirty product was about to trigger a global meltdown. Yet they’re still up to their old tricks and trying to fool us while they pump more oil. As governments and communities race to stop runaway climate change, oil companies have quietly found a way to sell even more oil, in the form of plastic. Plastic production is projected to grow astronomically and is expected to account for 60% of oil demand in the next decade.

It would be nice if plastic made from oil was as clean and benign as makers of plastic would like us to believe, but petrochemical plastics are dirty from start to finish, and it’s the product where big oil is placing its largest bets. It turns out some of the biggest oil corporations are also some of the biggest petrochemical corporations. And petrochemical production is mostly plastics.

Cheerleaders of increased plastic production can talk all day about how the solution to the plastic waste crisis is simply more recycling, but less than 9% of plastic is actually recycled, and the industry is now trying to relabel plastic incineration as recycling to help justify increased production. And plastic waste may be just the tip of the iceberg. Before all of the needless plastic products and packaging oil companies make even reach the waste stream, they’ve already done countless damage to communities near sites of production and to consumers.

To make plastic out of oil, petrochemical plants release toxic air pollution that saddles nearby communities with inordinate negative health impacts, communities which are more often likely to be communities of color. If plastic production increases as planned, these communities will be subject to even more dangerous air pollution than they already grapple with.

Once the plastic is made, it enters the market where consumers become the next group of humans put at risk by dirty oil in the form of petrochemical plastic. Unless you live on the dark side of the moon, where presumably it’s not yet a problem, then you’ve probably heard of the microplastics problem. How plastic things fall apart into little pieces, each shred smaller than the last. How scientists can’t seem to find a place on the planet that’s not teeming with microplastics. How scale doesn’t matter because it’s in the air above the tallest mountains, in the streams on every continent, and in our blood and breastmilk. Now that we know it’s everywhere, scientists are beginning to ask if plastic is actually safe, because it’s made with myriad chemicals.

As they examine the toxic impacts of petrochemical plastics, scientists are beginning to warn that it’s not looking good for us. The more research that is done into the impact of plastics on human health, the more that dangers are discovered. Plastic contains many toxic chemicals, and it turns out many of those chemicals are moving from the plastic into our bodies. That plastic soda bottle you drank out of last week? Odds are good that the chemical used as a catalyst in the bottle making process has made its way into the soda. That polyester stuffed animal your infant adorably sucks on the ears of? It’s also made with a dangerous catalyst that may be released into your child’s mouth. Defend Our Health tested beverages in plastic bottles and found dangerous chemicals in every single one, at least one of the chemicals a known carcinogen.

We cannot continue allowing oil companies to poison our air, bodies, and climate with their toxic product. This is a critical moment in history, and when they’re not too busy reaping outrageous profits, oil companies are trying to convince us the product they’re selling isn’t killing the planet and everything on it, despite the evidence. Instead of making more stuff we don’t need, like a box full of air-filled plastic bubbles that take up nine-tenths of the box space because it was somehow cheaper for Amazon to mail a thing that way, perhaps the industry could check the room and start trying in earnest to transition itself off its dirty product. You’d think none of these companies would want to be the last one around trying to sell a product no one wants, but it seems they’re all participating in a mass delusion driven by short-term thinking. It’s time to draw down, not ramp up, oil and gas, and that means plastic production too.