Forest Whispers: Respecting Nature’s Kinship and the Hidden Dialogue of Trees

Hawai’ian Kahuna Insights: Ancient Wisdom of the Islands

With the damage caused by the Lahaina inferno fresh in our minds, we went searching for Hawai’ian wisdom. We came across a very wise Hawai’i Kūpuna Elder, Kimokeo Kapahulehua. In this TikTok post, he shares sage advice that can benefit humanity, and protect our biodiversity.

@wisdom.keepers

Kimokeo Kapahulehua – Kūpuna Elder, Hawai’i Like / Follow / Share✨ @wisdom.keepers Uncle Kimokeo is a kūpuna elder born on the island of Kaua’i. He is dedicated to preserving and sharing his culture and traditions through his foundation @kimokeofoundation. He is a member of many canoe teams both in Hawai’i and around the world. 🌀For full interviews, community page and more join our WK Community on Patreon 🌀 ✨LINK IN BIO✨ #aloha #kupuna #elder #hawaii #wisdomkeeper #canoe #laka #mahalo #wisdomkeepers #native #indigenous #areyoulistening Film: @Jeremy Whelehan Music: Ynglingtal feat. Jhon Montoya WKTeam: @motherwaters @grandchildofthemoon Project: @wisdom.keepers Respect, Love & Gratitude. Hoomaikai me ka mahalo 💚🌿

♬ 【No drums】 Emotional space-like epic … – MoppySound

You cannot go to the forest and just take a tree.
You have to ask Laka.
She’s the goddess of the forest. That’s her child.
Why do you want to take her child without permission?
And as the canoe maker, and as…
He has to go up and tell Laka
“I’m going to take one of your child[ren], and I’m going to make it into a canoe.”
Laka will be very happy when you take her child and make it into many lives and serve many, many people.
We cannot just take.
We need to give.
So if you take one of her child[ren], maybe you should go plant?
And give back Laka 40 children.
Take the seed of the plant and take it right back to the same location because her children would like to be born with the parents, and the great grandparents, and the great great grandparents.
Don’t take her child from the forest to another forest because they will all grow better with their family.
Like us.

—Kimokeo Kapahulehua, Kūpuna Elder

Elder’s Wisdom is Backed by Science

Science suggests that trees can “communicate” with each other through a complex network of mycorrhizal fungi. This underground network allows trees to exchange nutrients, send warning signals about environmental changes, and share resources with one another.

Dr. Suzanne Simard, a professor of forest ecology at the University of British Columbia, is one of the primary researchers in this area. In her studies, she found that trees can transfer carbon, water, and nutrients to other trees in times of need. She discovered that mother trees recognize their kin and send them more carbon below ground. They reduce their own root competition to make elbow room for their kids.

“When mother trees are injured or dying, they also send messages of wisdom on to the next generation of seedlings.”

—Dr. Suzanne Simard, Professor, RPF, Leader of The Mother Tree Project, Department of Forest and Conservation Sciences, University of British Columbia

These findings validate the guidance shared by Kūpuna Elder, Kimokeo Kapahulehua.

Further, planting trees in non-native environments can have diverse ecological consequences. Research has shown that non-native trees can impact local ecosystems by:

  • Changing soil properties
  • Loss of humidity
  • Introduction of invasive alien species and disease
  • Negative impacts on biodiversity
  • Higher risks of adverse effects of fires and stores

When non-native tree species become invasive, they can outcompete, displace native species, alter habitat structures, and even change the soil properties and nutrient cycling.

It’s Time to Listen to the Wisdom

Whether we choose to listen to the wisdom of our elders or to science, climate disasters that are increasingly common underscore the urgency of listening and acting upon this wisdom.

Sources:

  • Simard, S.W., Beiler, K.J., Bingham, M.A., Deslippe, J.R., Philip, L.J., & Teste, F.P. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26(1), 39-60.
  • Source: Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Quine, C.P., & Sayer, J. (2008). Plantation forests and biodiversity: oxymoron or opportunity? Biodiversity and Conservation, 17(5), 925-951.
Maui, Hawaii 023 Lahaina, Banyan Tree, Allie_Caulfield from Germany, CC BY 2.0, via Wikimedia Commons
Maui, Hawaii 023 Lahaina, Banyan Tree, Allie_Caulfield from Germany, CC BY 2.0, via Wikimedia Commons


What is a wetland? An ecologist explains

Photo by Tyler Butler on Unsplash
Photo by Tyler Butler on Unsplash

By Jon Sweetman, The Conversation US CC BY-NC-ND 4.0)

Wetlands are areas of land that are covered by water, or have flooded or waterlogged soils. They can have water on them either permanently or for just part of the year.

Whether it’s year-round or seasonal, this period of water saturation produces hydric soils, which contain little or no oxygen. But this doesn’t mean that they are lifeless: Wetlands are full of unique water-loving plants and wildlife that have adapted to wet environments.

Wetlands can take many different forms, depending on the local climate, water conditions and land forms and features. For example, swamps are dominated by woody trees or shrubs. Marshes often have more grasslike plants, such as cattails and bulrushes. Bogs and fens are areas that accumulate peat – deposits of dead and partly decomposed plant materials that form organic-rich soil.

Trillions of dollars in ecological benefits

Wetlands are important environments for many reasons. They provide ecological services whose value has been estimated to be worth more than US$47 trillion per year.

For example, wetlands support very high levels of biodiversity. Scientists estimate that 40% of all species on Earth live or breed in wetlands.

Wetlands are critical homes or stopovers for many species of migratory birds. In the central U.S. and Canada, for example, wetlands in the so-called prairie pothole region on the Great Plains support up to three-quarters of North America’s breeding ducks.

The hunting and conservation group Ducks Unlimited works to conserve prairie pothole wetlands on North America’s Great Plains.

Along with providing important habitat for everything from microbes to frogs to waterfowl, wetlands also work to improve water quality. They can capture surface runoff from cities and farmlands and work as natural water filters, trapping excess nutrients that otherwise might create dead zones in lakes and bays. Wetlands can also help remove other pollutants and trap suspended sediments that cloud water bodies, which can kill aquatic plants and animals.

Because wetlands are often in low-lying areas of the landscape, they can store and slowly release surface water. Wetlands can be extremely important for reducing the impacts of flooding. In some places, water entering wetlands can also recharge groundwater aquifers that are important for irrigation and drinking water.

Wetlands also act as important carbon sinks. As wetland plants grow, they remove carbon dioxide from the atmosphere. They they die, sink to the bottom of the wetland and decompose very slowly.

Over time, the carbon they contain accumulates in wetland soils, where it can be stored for hundreds of years. Conserving and restoring wetlands is an important strategy for regulating greenhouse gases and mitigating the impacts of climate change.

Resources at risk

Despite the many valuable services they provide, wetlands are constantly being destroyed by draining them or filling them in, mainly for farming and development. Since 1970, the planet has lost 35% of its wetlands, a rate three times faster than the loss of forests.

Destruction and degradation of wetlands has led to the loss of many organisms that rely on wetland habitat, including birds, amphibians, fish, mammals and many insects. As one example, many dragonfly and damselfly species are declining worldwide as the freshwater wetlands where they breed are drained and filled in. A marsh or bog may not look like a productive place, but wetlands teem with life and are critically important parts of our environment.


Disclosure statement
Jon Sweetman receives funding from the US EPA for work on wetland restoration. He is affiliated with the Society for Freshwater Science, the Ecological Society of America, and the Society of Wetland Scientists

Light pollution is disrupting the seasonal rhythms of plants and trees, lengthening pollen season in US cities

Photo by Saad Chaudhry on Unsplash
Photo by Saad Chaudhry on Unsplash

By Yuyu Zhou, The Conversation (CC BY-NC-ND 4.0).

The big idea

City lights that blaze all night are profoundly disrupting urban plants’ phenology – shifting when their buds open in the spring and when their leaves change colors and drop in the fall. New research I co-authored shows how nighttime lights are lengthening the growing season in cities, which can affect everything from allergies to local economies.

In our study, my colleagues and I analyzed trees and shrubs at about 3,000 sites in U.S. cities to see how they responded under different lighting conditions over a five-year period. Plants use the natural day-night cycle as a signal of seasonal change along with temperature.

We found that artificial light alone advanced the date that leaf buds broke in the spring by an average of about nine days compared to sites without nighttime lights. The timing of the fall color change in leaves was more complex, but the leaf change was still delayed on average by nearly six days across the lower 48 states. In general, we found that the more intense the light was, the greater the difference.

Chart: The Conversation/CC-BY-ND Source: Meng, et al. 2022 Get the data Download image

We also projected the future influence of nighttime lights for five U.S. cities – Minneapolis, Chicago, Washington, Atlanta and Houston – based on different scenarios for future global warming and up to a 1% annual increase in nighttime light intensity. We found that increasing nighttime light would likely continue to shift the start of the season earlier, though its influence on the fall color change timing was more complex.

Why it matters

This kind of shift in plants’ biological clocks has important implications for the economicclimatehealth and ecological services that urban plants provide.

On the positive side, longer growing seasons could allow urban farms to be active over longer periods of time. Plants could also provide shade to cool neighborhoods earlier in spring and later in fall as global temperatures rise.

But changes to the growing season could also increase plants’ vulnerability to spring frost damage. And it can create a mismatch with the timing of other organisms, such as pollinators, that some urban plants rely on.

Urban light intensity varies among cities, and among neighborhoods within cities. Yuyu Zhou, CC BY-ND
Urban light intensity varies among cities, and among neighborhoods within cities. Yuyu Zhou, CC BY-ND

A longer active season for urban plants also suggests an earlier and longer pollen season, which can exacerbate asthma and other breathing problems. A study in Maryland found a 17% increase in hospitalizations for asthma in years when plants bloomed very early.

What still isn’t known

How the fall color timing will change going forward as night lighting increases and temperatures rise is less clear. Temperature and artificial light together influence the fall color in a complex way, and our projections suggested that the delay of coloring date due to climate warming might stop midcentury and possibly reverse because of artificial light. This will require more research.

How urban artificial light will change in the future also remains to be seen.

One study found that urban light at night had increased by about 1.8% per year worldwide from 2012-2016. However, many cities and states are trying to reduce light pollution, including requiring shields to control where the light goes and shifting to LED street lights, which use less energy and have less of an effect on plants than traditional streetlights with longer wavelengths.

Urban plants’ phenology may also be influenced by other factors, such as carbon dioxide and soil moisture. Additionally, the faster increase of temperature at night compared to the daytime could lead to different day-night temperature patterns, which might affect plant phenology in complex ways.

Understanding these interactions between plants and artificial light and temperature will help scientists predict changes in plant processes under a changing climate. Cities are already serving as natural laboratories.

The Conversation