World Vegan Day marks the start of World Vegan Month, a month dedicated to celebrate the vegan movement. Vegans worldwide acknowledge how far the vegan movement has come, reflect on successes, and raise awareness on the benefits of a vegan lifestyle.
The infographic below by Statista shows that between one to three percent (1-4%) of Americans are vegan, depending on age. In terms of income, vegans are most likely to be earning below $30,000 a year. Liberals are far more likely than moderates or conservatives to ditch meat or dairy.
Editor’s note: This story is part of a nine-month investigation of drinking water contamination across the U.S. The series is supported by funding from the Park Foundation and Water Foundation. View related stories here.
Many people assume that the water that flows from our taps is free of harmful microorganisms. But each year thousands of Americans in rural areas, small towns and even some cities are sickened by living pathogens that can flourish in untreated or inadequately treated water from private wells and municipal systems.
An increase in heavy precipitation with climate change means the risk of drinking water contamination by bacteria, viruses and other microbes could also increase, especially in places where reliance on groundwater, proximity to agricultural operations and certain types of geology increase vulnerability.
Bacteria like E. coli, Salmonella and Campylobacter, and viruses like hepatitis, norovirus and rotavirus, are all found in drinking water contaminated with human and animal fecal waste. These can cause gastrointestinal and other ailments. For some that’s a matter of discomfort, but for children, the elderly and those with compromised immune systems, this can be dangerous, debilitating and even deadly.
“We’ve known for years that extreme [weather] events can cause risk for waterborne outbreaks — in developing countries, but also in developed countries,” says epidemiologist Elsio Wunder Jr., an expert in water sanitation at the Yale School of Public Health.
Pathogens in U.S. public drinking water systems cause upwards of 4 million digestive tract illnesses each year. A 2017 study by Florida State University assistant professor of geography Christopher Uejio and colleagues predicted an increase in such illnesses in children under age 5 in relation to climate change, noting the impact on “small rural” municipalities that distribute untreated groundwater in their systems.
Multiple studies have documented the risk of precipitation-driven drinking water contamination in Wisconsin, a state especially susceptible because of its livestock operations and geology. A 2010 report by Medical College of Wisconsin, Milwaukee, associate professor of pediatrics Patrick Drayna and colleagues found that visits to a Wisconsin pediatric hospital for gastrointestinal symptoms increased an estimated 11% four days after rainfall.
Rainwater courses through lagoons of manure or manure spread on fields as fertilizer, picking up pathogens and carrying them into groundwater as it seeps down into the soil. The porous dolomite that underlies parts of Wisconsin and surrounding states allows pathogen-laden rainwater to make its way into the aquifers that feed wells and municipal water systems. Human fecal pathogens can also make their way from septic systems into drinking water supplies as rainwater permeates.
“Groundwater was rainfall, it just takes a while to get there,” explains Mark Borchardt, a microbiologist for the U.S. Department of Agriculture (USDA), who reported in 2019 that 60% of wells in northeastern Wisconsin’s Kewaunee County were contaminated with microbes found in fecal waste. “Rainfall has chemistries that detach microorganisms. When it touches a pathogen attached to a soil particle, the pathogen can be released and move on.”
In northern climates, frozen ground makes it less likely that pathogens can get into groundwater in winter. But warmer winters expected with climate change likely mean that ground will be frozen less of the time and that precipitation will fall as rain instead of snow, increasing the chances for pathogens to move.
Meanwhile drought — also expected to increase with climate change — can increase the risk of pathogen contamination as well.
“At the most basic level, drought can leave people without easy access to water, and they have to get water from a less-safe source,” says Jeni Miller, executive director of the Global Climate and Health Alliance. “And with less water in the aquifers, [pathogens] become more concentrated,” meaning someone could get a higher dose of pathogens from drinking water from aquifer-fed wells, and the pathogens may be more likely to cause illness when ingested.
Source Matters
Private wells often pose the greatest risk of sickness from pathogen contamination, since there are typically no requirements for testing or treating wells, and it is usually up to an individual homeowner to discover or deal with contamination. More than 13 million households nationwide get their drinking water from such wells.
Well contamination has been a problem in not only the Midwest but in Appalachia and other regions as well, often in areas where residents lack the funds for testing or comprehensive maintenance. The organization Appalachian Voices in 2009 cited a USDA study, saying it found “over 50 percent of the private drinking water wells in the Appalachian area of Kentucky are contaminated with disease-carrying pathogens” because of poorly managed “straight” sewage pipes that contaminate surface water. A 2017 report by University of Tennessee registered nurse and then–doctoral student Erin Arcipowski and colleagues reported that pathogenic contamination of drinking water is a serious issue in low-income rural areas of Appalachia. The researchers noted that some residents lack funds for maintaining wells and might rely on “expensive bottled water from a remote convenience store” if they don’t have drinkable water at home. The study found E. coli or fecal coliform bacteria in 15 of 16 sites where water was used for drinking or recreation.
Municipal water systems that tap groundwater can also be at risk, since there are no federal mandates that groundwater be treated before distribution, according to Borchardt. About 95,000 such systems nationwide do not disinfect their water, and about 85,000 people in Wisconsin are served by systems that do not disinfect.
Federal law does require disinfection of drinking water drawn from surface sources, so there is seemingly less risk people will get sick from these systems. But treatment systems can malfunction when heavy rain makes the water more turbid (cloudy).
In 1993 the city of Milwaukee suffered an outbreak of Cryptosporidium, a tiny parasite, that sickened more than 400,000 people with diarrhea and killed 69. A water treatment plant had inadequately treated turbid water that may have been contaminated with the parasite by agricultural or human waste carried into Lake Michigan by rain and snow melt. Between 2009 and 2017, contaminated drinking water caused 339 cases of Cryptosporidium nationwide, according to the U.S. Centers for Disease Control and Prevention.
Pipes can be a problem, too. If the distribution systems that deliver drinking water contain cracks, pathogen-laden rainwater or groundwater can infiltrate them. If pipes carrying sewage are nearby and are also leaking, rainwater can help move pathogens from sewage into drinking water.
“When pipes leak, they don’t just leak out, they also leak in,” Borchardt notes.
Groundwater was a suspected source of contamination by the “brain-eating” amoeba Naegleria fowleri in Louisiana in recent years, which is typically deadly if it enters the nose. If groundwater tapped for drinking water is not disinfected or if disinfection systems fail, Naegleria may be present in tap water. Naegleria-contaminated groundwater can also enter water systems when pipes break. There was also an outbreak in Texas this fall, and because Naegleria thrives in warm temperatures, it may become an increasing problem with climate change.
Reducing Risk
Governments and individuals can take a number of measures to reduce the risk of pathogens in drinking water. State or local governments can impose stricter controls on manure storage and spreading, including buffers and setbacks from residences.
“We currently have industrial-scale ranching and raising animals for meat and eggs, producing industrial-size pools of animal waste,” says Miller. “We need to reduce all those things that threaten our water supply as much as possible.”
Widespread testing can help identify contamination before people get sick. And municipalities that aren’t disinfecting their water can do so with UV light or other systems. Individuals can also install treatment systems for their own well water.
“More people are installing treatment systems in their homes, but systems are quite expensive, it could be several thousand dollars and requires regular maintenance which we people are not always very good at,” says Scott Laeser, water program director of the advocacy group Clean Wisconsin. “Ultimately we need to be focused on preventing pollution from contaminating our groundwater.”
Karen Levy, an associate professor of environmental and occupational health sciences at the University of Washington, has long studied waterborne disease. She said that while increased rains could mean more contamination risk in the U.S., it’s important people have faith in public drinking water systems, building the will to maintain and protect those systems, rather than turning to expensive and environmentally destructive bottled water.
“It’s really important to not scare people away from drinking water,” Levy said.
Meanwhile the risk of drinking water contamination is just one more reason, scientists agree, that people and governments must do all they can to curb climate change.
“All of the climate models show an increase in the frequency of extreme events, this means at both ends, more droughts and more floods,” says Jonathan Patz, director of the Global Health Institute at the University of Wisconsin-Madison. “The bottom line is it should be a multi-pronged, multi-level approach where not only do we have to anticipate heavy rainfall events that are expected with climate change, but instead of building systems for what we’re used to now, our water systems need to be much stronger.”
The world is dragging its feet on efforts to tackle the climate crisis by reducing its energy use, according to a global watchdog.
In its World Energy Outlook 2020, the lnternational Energy Agency (IEA) says that while emissions of carbon dioxide (CO2, the main climate-changing greenhouse gas), are falling, the reduction needs to be far steeper to make any meaningful impact.
“Despite a record drop in global emissions this year, the world is far from doing enough to put them into decisive decline”, says Fatih Birol, the IEA’s executive director.
The Agency says energy demand is set to drop by 5% in 2020, with an overall decline of 7% in emissions of CO2 from the global energy sector. This means that annual emissions of CO2 are back to where they were a decade ago, the report says.
Oil demand this year is likely to be down by 8%, while coal use will fall by 7%.
Solar projects now offer some of the lowest-cost electricity ever seen.”
That’s the headline good news: the bad news is that emissions of methane – among the most potent of greenhouse gases – are rising, says the report.
Total global investment in the energy sector is also falling dramatically, and is set to be down 18% year on year.
That means that despite the rise of renewable energy, particularly of solar power, governments, utilities and corporations around the world are still not spending enough to bring about a major transition in energy use – and to meet the challenge of catastrophic climate change.
“Only an acceleration in structural changes to the way the world produces and consumes energy can break the emissions trend for good”, says the IEA.
Problem grids
While hydropower is still the leading source of renewable power, solar is described as the new king of electricity.
“With sharp cost reductions over the past decade, solar PV [solar photovoltaic energy] is consistently cheaper than new coal- or gas-fired power plants in most countries, and solar projects now offer some of the lowest-cost electricity ever seen.”
A major problem is that as solar and wind projects are installed and expanded, other parts of the energy sector also need to be developed, particularly infrastructure associated with electricity grids.
In many parts of the world energy utilities are in severe financial straits and have little or no money to maintain or invest in achieving more efficiencies and in infrastructure.
“Electricity grids could prove to be the weak link in the transformation of the power sector, with implications for the reliability and security of electricity supply”, says the IEA.
Covid-19’s effects
The report says it’s not just the energy industry that has to change. “To reach net-zero emissions, governments, energy companies, investors and citizens all need to be on board – and will all have unprecedented contributions to make.”
The Covid crisis is a major factor in assessing the global energy outlook.
The pandemic, says the IEA, has caused more disruption in the energy sector than any other event in recent history, with impacts for years to come.
“It is too soon to say whether today’s crisis represents a setback for efforts to bring about a more secure and sustainable energy system, or a catalyst that accelerates the pace of change”, the report says. —Climate News Network, LONDON, 16 October, 2020