Uncovering the Mystery of Exploding Craters in Siberia

Photo of large crater
Large craters in the tundra on Russia’s Yamal Peninsula are formed by a combination of warming and osmosis, according to new research in Geophysical Research Letters. Credit: Adobe Stock/Alexander Lutsenko

How Thawing Permafrost and Methane Release Are Creating Explosive Craters—and What It Means for Our Planet

Did you know that giant craters have mysteriously appeared in Siberia? Since 2014, researchers have discovered deep craters in the Yamal and Taymyr peninsulas, leaving scientists puzzled. What’s causing these formations? The answer lies in a surprising combination of natural processes involving melting permafrost and the release of methane gas—one of the most potent greenhouse gases linked to climate change.

What Is Permafrost?

Permafrost is ground that remains frozen for at least two consecutive years. It often holds ice and organic material like dead plants and animals. While it might seem unremarkable, permafrost plays a crucial role in storing methane, a gas produced when organic material breaks down without oxygen. Normally, permafrost traps this gas beneath the frozen ground, keeping it safely locked away. But what happens when the permafrost starts to thaw?

The Problem: Mysterious Craters

In 2014, the first massive crater was discovered in the Yamal Peninsula. This crater was so large and sudden that it alarmed local residents and scientists alike. As more craters appeared, scientists noticed that these holes emitted high levels of methane. It became clear that the formation of these craters was not just a random event but was linked to powerful forces beneath the ground.

The Science Behind the Explosions

Osmosis Explained

To understand what’s happening, we need to talk about osmosis. In simple terms, osmosis is the movement of water from an area of low concentration to an area of high concentration. Imagine putting a dry sponge in water; the water naturally flows into the sponge until it’s soaked. A similar process happens deep underground in Siberia.

The Cryopeg Factor

Beneath the surface of the permafrost lies a cryopeg, which is a layer of salty, unfrozen water. This salty layer creates an osmotic gradient—essentially a pressure difference that draws water downward. During warmer months, when surface ice melts, water trickles down into the cryopeg, slowly raising the pressure below the surface.

Pressure Build-Up

As more water flows into the cryopeg, pressure builds up. The frozen soil above acts like a lid, holding the pressure in. Eventually, when the pressure becomes too great, the soil cracks open. This cracking allows methane hydrates—methane trapped within ice structures—to rapidly decompress and turn into gas. The result? A sudden, powerful explosion that forms a crater.

Illustration of permafrost explosion caused by warming
Warming causes melting in the active layer, which expands deeper into the permafrost. Meltwater then enters the salty cryopeg through osmosis, causing the expansion of the cryopeg, which cracks the overlying permafrost. When those cracks reach the surface, the rapid decrease in pressure in the cryopeg damages the methane hydrates below and triggers a rapid physical explosion. Images not to scale. Credit: AGU/Madeline Reinsel

The Release of Methane

When the soil fractures, methane that was trapped in the hydrate layer is released. This isn’t just a minor problem. Methane is about 25 times more effective at trapping heat in the atmosphere than carbon dioxide, making it a significant contributor to global warming. The sudden release of methane from these explosions adds to the greenhouse gases already present in the atmosphere, accelerating climate change.

Why This Matters

Understanding why these explosions occur is crucial. The Arctic is warming at twice the rate of the rest of the planet. As temperatures rise, more permafrost thaws, creating conditions ripe for these explosive events. The more methane released into the atmosphere, the greater the impact on climate change. This process creates a feedback loop: warming causes permafrost to thaw, releasing methane, which in turn speeds up global warming.

Key Takeaways:

  • Methane’s Impact: Methane contributes significantly to the greenhouse effect, making these explosive releases a serious environmental concern.

  • Climate Change Feedback Loop: Thawing permafrost leads to methane release, which further accelerates warming and creates more opportunities for explosions.

What Scientists Are Doing

Scientists are racing to understand the full extent of this phenomenon. Ongoing research involves monitoring permafrost temperatures, tracking methane levels, and studying the structure of cryopegs. Some teams are even modeling future scenarios to predict where new craters might form. By understanding how and when these methane releases occur, experts hope to improve climate models and develop better strategies to address global warming.

Summing Up

The discovery of these craters in Siberia has shed light on an unexpected consequence of climate change. As permafrost thaws and pressure builds beneath the surface, methane releases and explosions can occur. Understanding these processes not only helps explain the mysterious craters but also highlights the urgent need for action. How can we, as individuals and communities, contribute to slowing down global warming and preventing further methane releases?

Understanding these complex natural processes gives us insight into the interconnectedness of our environment and the urgent measures needed to mitigate climate change.


Source: Morgado, A. M. O., Rocha, L. A. M., Cartwright, J. H. E., & Cardoso, S. S. S. (2024). Osmosis Drives Explosions and Methane Release in Siberian Permafrost. Geophysical Research Letters.

Are Biodegradable Plastics Truly Eco-Friendly? Unpacking the Facts for a Sustainable Future

Impact Characterization of Biodegradable Plastics
Impact Characterization of Biodegradable Plastics
Credit: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669.


When you hear the word “biodegradable,” what comes to mind? Many of us assume biodegradable plastics are a perfect solution for reducing plastic pollution. However, these materials have complex environmental impacts that aren’t immediately obvious. While they can help reduce certain types of pollution, they also come with hidden trade-offs, including greenhouse gas emissions that contribute to climate change.

In this article, we’ll dive into the environmental impacts of biodegradable plastics, explain how Life Cycle Impact Assessment (LCIA) helps scientists understand their effects, and offer tips for more eco-friendly choices.

What Are Biodegradable Plastics?

Biodegradable plastics are materials designed to break down in the environment faster than traditional plastics. They are typically made from renewable resources, like corn starch or sugarcane, or from fossil-based sources. Common types include plant-based PLA (polylactic acid) and fossil-based PCL (polycaprolactone).

To fully understand their impact, scientists use a process called Life Cycle Impact Assessment (LCIA). LCIA evaluates a product’s environmental footprint across its entire life cycle—from production to disposal. This is essential for understanding biodegradable plastics’ real impact on our planet, including factors like greenhouse gas emissions, water pollution, and waste management challenges.

Benefits of Biodegradable Plastics in Reducing Microplastic Pollution

One of the most significant benefits of biodegradable plastics is their potential to reduce microplastic pollution. Microplastics are tiny plastic fragments that pollute our oceans, rivers, and even our food and water. Because they don’t easily decompose, they accumulate in ecosystems and can harm wildlife and human health.

Biodegradable plastics offer a promising alternative. When they break down properly, they are less likely to form these harmful microplastics. Scientists assess this potential benefit through a measure in LCIA called aquatic ecotoxicity, which looks at how materials impact aquatic life. Biodegradable plastics typically score lower in aquatic ecotoxicity than traditional plastics because they break down more completely, reducing the risk of long-term pollution.

Think of biodegradable plastics like “biodegradable litter.” If disposed of properly, they disappear without leaving a trace, unlike conventional plastics that break into microplastics and linger in the environment for years.

The schematic diagram of the LCA methodology for biodegradable plastics
Impact Characterization of Biodegradable Plastics
Credit: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669, Figure 1.


Hidden Costs of Biodegradable Plastics: Greenhouse Gas Emissions

While biodegradable plastics can reduce visible pollution, they aren’t without environmental costs. As these plastics break down, particularly in natural environments like rivers or forests, they can release greenhouse gases (GHGs) like methane—a potent contributor to climate change.

Here’s a surprising statistic: when PCL, a common biodegradable plastic, breaks down in a natural setting, it can emit up to 16.3 kilograms of CO₂-equivalent per kilogram of plastic. This emission rate is about 16 times higher than what it would release in an industrial composting facility.

Scientists use Global Warming Potential (GWP) within LCIA to measure how much a material contributes to climate change. For biodegradable plastics, scientists often use dynamic GWP calculations, which track greenhouse gas emissions over time rather than assuming a constant rate. This approach reveals that biodegradable plastics can emit GHGs in bursts as they break down, especially under anaerobic (low-oxygen) conditions in natural environments.

In some scenarios, biodegradable plastics that aren’t properly managed may actually emit more greenhouse gases than traditional plastics.

Role of Waste Management in Reducing Environmental Impact

The environmental impact of biodegradable plastics depends heavily on how they are disposed of. Ideally, they should be processed in industrial composting facilities, where conditions like temperature and oxygen are carefully controlled to allow these plastics to break down quickly and with minimal greenhouse gas emissions.

However, when biodegradable plastics end up in natural environments, such as lakes or soil, they break down under uncontrolled conditions, leading to increased emissions.

Think of biodegradable plastics as “biodegradable litter.” Just as litter remains litter if tossed on the ground, biodegradable plastics can still pollute if not disposed of correctly.

This brings us to the End-of-Life (EoL) Impact stage in LCIA. LCIA considers the full “end-of-life” cycle of a product to evaluate its environmental footprint based on where it ends up. Without the proper disposal infrastructure, biodegradable plastics may add to environmental pollution rather than reduce it.

What the Future Holds for Biodegradable Plastics

As scientists learn more about the impacts of biodegradable plastics, they’re working to design materials that minimize environmental costs. Using tools like LCIA, researchers can adjust physical properties—such as density, degradation rates, and carbon content—so that biodegradable plastics break down with lower greenhouse gas emissions and reduced aquatic toxicity.

LCIA helps scientists make informed design choices that balance eco-friendliness with practicality. For instance, certain plastics might be designed with an optimized Specific Surface Degradation Rate (SSDR), which controls the rate at which they break down in nature. This helps reduce greenhouse gas emissions while ensuring the plastic still decomposes efficiently.

Think of it like a “recipe” for future plastics. Each ingredient—density, degradation rate, carbon content—needs to be carefully balanced to create a plastic that’s both sustainable and functional. Just as a recipe requires precision for the best result, so does the design of biodegradable plastics.

With LCIA as a guide, scientists and manufacturers can develop low-carbon biodegradable plastics that help protect the planet by reducing pollution and managing emissions.

What Can We Do to Make a Difference?

As consumers, we have a role to play in reducing plastic pollution and supporting sustainable materials. Here are some ways we can contribute:

  • Mindful Consumption: Choose products with minimal packaging and support companies that use sustainable materials.

  • Proper Disposal: Make sure biodegradable plastics go into the correct waste streams. Check local composting and recycling guidelines to see if your area has facilities for biodegradable plastics.

  • Spread the Word: Share this information with friends and family. Understanding the pros and cons of biodegradable plastics helps everyone make more informed, eco-friendly choices.

Summing Up

Biodegradable plastics are a promising step toward reducing plastic pollution, but they also come with their own environmental costs, especially when they end up in natural environments. Through Life Cycle Impact Assessment (LCIA), scientists help us understand these trade-offs, from reducing microplastic pollution to the hidden impacts of greenhouse gas emissions.

Ultimately, while biodegradable plastics offer benefits, they are only part of the solution. Proper disposal methods, innovative material design, and mindful consumer choices are essential to building a sustainable future for our planet.


Source: Piao, Z., Boakye, A. A. A., & Yao, Y. (2024). Environmental impacts of biodegradable microplastics. Nature Chemical Engineering, 1, 661–669. https://www.nature.com/articles/s44286-024-00127-0?error=cookies_not_supported&code=4c596dce-7748-4e4a-8141-494612723d4d

Climate Litigation: A Growing Force in the Fight Against Climate Change



As the world faces increasingly severe climate impacts, governments and corporations are being held accountable through a surge of climate-related lawsuits. A recent study, Research Areas for Climate Litigation, conducted by the Union of Concerned Scientists (UCS) in September 2024, highlights the critical role of climate litigation in driving action where traditional policy-making has often fallen short.

The Rise of Climate Litigation

Since 2015, more than 1,800 climate-related lawsuits have been filed worldwide, with at least 230 new cases in 2023 alone. The United States, United Kingdom, and Australia have become the primary hubs for this legal activity, while other regions, especially parts of Africa, have seen limited litigation.

The UCS study emphasizes that this growing body of legal action requires strong scientific evidence to be effective. To that end, scientists and researchers are increasingly collaborating with legal teams to provide the necessary data, helping courts make informed decisions on climate cases. The study aims to bridge gaps between science and law by identifying key research priorities that can strengthen future litigation efforts.

Key Research Areas for Climate Litigation

The study highlights three priority research areas that are essential for advancing climate lawsuits:

  1. Attribution Science: This field connects specific climate impacts to particular sources of emissions. Courts need this science to establish a clear causal link between climate change and its effects, such as extreme weather events. The study calls for more geographically diverse research, particularly in regions like the Global South, where climate data is scarce.

  2. Climate Change and Human Health: Legal arguments are increasingly focusing on the health impacts of climate change. Vulnerable groups, including older adults, infants, people with disabilities, and those in poverty, are especially at risk from worsening air quality, heatwaves, and water scarcity. The study points to a need for more research linking climate change to health outcomes like asthma, cardiovascular diseases, and heat-related illnesses.

  3. Economic Modeling: Courts rely on economic data to assess the costs of climate change. This includes not only the direct damages caused by extreme weather events but also the costs of adapting to a changing climate and the economic opportunities lost due to inaction. The study calls for robust economic modeling that can predict future costs and benefits under different climate scenarios.

Strategic Research Areas for the Future

Beyond the priority areas, the study identifies five strategic research areas where further scientific evidence is needed to support climate litigation:

  1. Legal and Financial Accountability: Holding corporations accountable for their emissions, particularly in industries like fashion and cement, requires more detailed research on how financial institutions contribute to climate change by funding fossil fuel projects.

  2. Disinformation and Greenwashing: The study stresses the importance of exposing and countering misleading claims made by corporations about their environmental practices, which can mislead consumers and delay meaningful climate action.

  3. Fair Share Analysis and Compliance: Understanding whether corporations and nations are meeting their climate goals is critical. The study highlights the need for standardized emissions metrics and tracking, especially for corporations with complex supply chains.

  4. Environmental and Social Impacts: Research on how climate change affects ecosystems, biodiversity, and human communities—especially in remote regions with limited data—is vital for comprehensive environmental impact assessments.

  5. Emissions Accounting and Reductions: Courts need better methods for tracking and reducing emissions, particularly those related to the indirect effects of products, known as Scope 3 emissions. The study also calls for research into the effectiveness of renewable energy credits and other mitigation strategies.

Losses and Damages: A Cross-Cutting Theme

One of the study’s most important cross-cutting themes is losses and damagesthe economic and non-economic harms caused by climate change that can’t be prevented through adaptation or mitigation. The study calls for more research to quantify these losses, especially in terms of intangible cultural heritage, social structures, and ways of life. Understanding these losses is critical for communities seeking reparations for the damage caused by climate change.

Why This Study Matters

As climate litigation accelerates globally, the need for solid scientific research to support these cases becomes more urgent. The UCS study provides a roadmap for scientists looking to contribute to the legal battle against climate change by focusing on areas where their work can have the greatest impact. This research will not only improve the effectiveness of climate lawsuits but also push governments and corporations to take more meaningful climate action.

Summing Up

Climate litigation is emerging as a powerful tool in the fight against climate change. With over 1,800 lawsuits filed since 2015, the legal community is increasingly relying on science to prove the connections between climate change, its impacts, and the entities responsible. The Union of Concerned Scientists’ 2024 study highlights the critical research areas—such as attribution science, health impacts, and economic modeling—that will strengthen these legal efforts.

For those interested in how climate change is being addressed through legal channels, this study underscores the vital role that science plays in holding governments and corporations accountable. As the impacts of climate change worsen, the importance of this intersection between science and law will only grow.


Source: Merner, L. D., Phillips, C. A., & Mulvey, K. (2024). Research areas for climate litigation: 2024 report. Union of Concerned Scientists.