Framing up the community-centred future of peatland management

Women in Perigi Village, South Sumatra, routinely harvest Purun to make plaited mats. Photo by Rifky/CIFOR
Women in Perigi Village, South Sumatra, routinely harvest Purun to make plaited mats. Photo by Rifky/CIFOR

Experts share knowledge from long-term research in Indonesia and beyond

By Nabiha Shahab, Forests News (CC BY-NC-SA 4.0)

Indonesia has the third-largest area of biodiversity-rich tropical forests in the world. The archipelago is considered one of the world’s 17 ‘megadiverse’ countries and houses two of the 25 global biodiversity ‘hotspots’. In 2015, however, the country experienced its worst forest fire disaster in almost two decades. In September and October that year, carbon emissions released by the fires reached 11.3 million tons per day – higher than the emissions of the entire European Union, which released 8.9 million tons daily over the same period.

In response to the disaster – and as part of wider efforts to restore 14 million hectares of degraded land, including two million hectares of peatlands – the Korean and Indonesian governments have developed a peatland restoration project which focuses on the ‘3Rs’: rewetting, revegetation, and revitalization. Activities include rewetting infrastructure, revegetating over 200 hectares with tree planting, and land revitalization in 10 villages surrounding the project site, as well as the creation of a small peatland education center.

“We believe that this peatland restoration project will help create a sustainable ecosystem and have a productive impact on the community,” said Junkyu Cho, Korean Co-Director of the Korea-Indonesia Forest Cooperation Center (KIFC), during a symposium to share knowledge and experience gained from peatland restoration initiatives in several locations across Indonesia, on 7 December 2022 at CIFOR’s Bogor campus. The international symposium also aimed to enhance the network of researchers involved in peatland restoration and governance.

The research team, which hails from Korea’s National Institute of Forest Science (NIFoS) and the Center for International Forestry Research and World Agroforestry (CIFOR-ICRAF), will develop a model for restoring peatlands and other degraded lands in Indonesia in ways that make the most of science and technology and improve local livelihoods.

“We hope that various issues, such as climate change adaptation, nature-based solutions, and bio-economy will be explored under the rubric of peatlands,” said Hyungsoon Choi, the director of NIFoS’ Global Forestry Research Division. The researchers are also helping to develop sustainable community-based reforestation and enterprises, said CIFOR-ICRAF Senior Scientist Himlal Baral.

During the symposium, Baral also shared information on CIFOR-ICRAF’s long-term Sustainable Community-based Reforestation and Enterprises (SCORE) project, which runs for the same period as the UN Decade on Ecosystem Restoration and provides valuable opportunities for research. The study involves identifying areas for restoration, and for planting sustainable timber and non-timber forest products. “We start with small demonstration trials, and we hope to scale up and achieve long-term impacts,” he said, adding that smart agroforestry is one of the options for restoration.

Nisa Novita, from local NGO Yayasan Konservasi Alam Nusantara (YKAN), shared some of her research into the mitigation potential of natural climate solutions for Indonesia. Her team found that the country offers a dramatic opportunity to contribute to tackling climate change by increasing carbon sequestration and storage through the protection, improved management, and restoration of drylands, peatlands, and mangrove ecosystems. “Protecting, managing, and restoring Indonesia’s wetlands is key to achieving the country’s emissions reduction target by 2030,” she said.

Several presenters shared models for cost-effective restoration. A-Ram Yang of NIFoS’ Global Forestry Division discussed a visit to the Perigi peatland landscape in South Sumatra in September 2022. Meanwhile, a team from Korea’s Kookmin University shared their experience assessing ecosystem services in North Korea’s forests with a view to adapting these for use in Indonesia.

Budi Leksono, a senior researcher at the Research Center for Plant Conservation and the Forestry, National Research, and Innovation Agency (BRIN), spoke of the potential of genetic improvement to serve restoration goals. “The use of improved seeds for plantation forests has been proven to increase the productivity and quality of forest products,” he said. “In accordance with the goal of restoration in Indonesia to restore trees and forests to degraded forest landscapes on a large scale, it should also be applied to the landscape restoration program to increase the added value of the land, and will have an impact on increasing ecological resilience and productivity.”

On a similar note, in a research collaboration with CIFOR-ICRAF, scientists at Sriwijaya University (UNSRI) developed a model for landscape restoration to be applied to wide range of species of  high economic value, including Jelutung (Dyera costulata), Belangeran (Shorea balangeran), Nyamplung (Calophyllum inophyllum) and Malapari (Pongamia pinnata). One of the scientists, Agus Suwignyo, said that “the use of improved seeds for landscape restoration will have an impact on people’s welfare if this is also followed by implementing a planting pattern that is in accordance with the conditions of the land and the needs of the local community.”

Participating farmers also chose their own preferred species, such as jackfruit (Artocarpus heterophyllus), avocado (Persea americana), mango (Mangifera indica), nangkadak (a hybrid of Artocarpus heterophillus and Artocarpus integer), sapodilla (Manilkara zapota), oranges (Citrus sp.), soursop (Annona muricata), rambutan (Nephelium lappaceum) and betel or areca palm (Areca catechu). From 2018 to 2020, UNSRI helped local farmers to develop smart agrosilvofishery, improved rice cultivation, introduce other economical rice crops, plant trees, and cultivate various local fish species.

The method showed positive results. “During the long dry season in 2018, the surrounding area was burned by other farmers, but our demo plot area was not burned,” said Suwignyo. “This year, we scaled up the area to 10 hectares.” The story echoed a common theme within the symposium: the importance of well-planned, multidisciplinary, evidence-based restoration that puts both people and nature first.

This research was supported by the National Institute of Forest Science, Republic of Korea and collaborated with National Research and Innovation Agency (BRIN), Republic of Indonesia ; Tropical Rainforest Reforestation Center of Mulawarman University; University of Muhammadiyah Palangkaraya; Center of Excellence for Peatland Research at Sriwijaya University.

What is a wetland? An ecologist explains

Photo by Tyler Butler on Unsplash
Photo by Tyler Butler on Unsplash

By Jon Sweetman, The Conversation US CC BY-NC-ND 4.0)

Wetlands are areas of land that are covered by water, or have flooded or waterlogged soils. They can have water on them either permanently or for just part of the year.

Whether it’s year-round or seasonal, this period of water saturation produces hydric soils, which contain little or no oxygen. But this doesn’t mean that they are lifeless: Wetlands are full of unique water-loving plants and wildlife that have adapted to wet environments.

Wetlands can take many different forms, depending on the local climate, water conditions and land forms and features. For example, swamps are dominated by woody trees or shrubs. Marshes often have more grasslike plants, such as cattails and bulrushes. Bogs and fens are areas that accumulate peat – deposits of dead and partly decomposed plant materials that form organic-rich soil.

Trillions of dollars in ecological benefits

Wetlands are important environments for many reasons. They provide ecological services whose value has been estimated to be worth more than US$47 trillion per year.

For example, wetlands support very high levels of biodiversity. Scientists estimate that 40% of all species on Earth live or breed in wetlands.

Wetlands are critical homes or stopovers for many species of migratory birds. In the central U.S. and Canada, for example, wetlands in the so-called prairie pothole region on the Great Plains support up to three-quarters of North America’s breeding ducks.

The hunting and conservation group Ducks Unlimited works to conserve prairie pothole wetlands on North America’s Great Plains.

Along with providing important habitat for everything from microbes to frogs to waterfowl, wetlands also work to improve water quality. They can capture surface runoff from cities and farmlands and work as natural water filters, trapping excess nutrients that otherwise might create dead zones in lakes and bays. Wetlands can also help remove other pollutants and trap suspended sediments that cloud water bodies, which can kill aquatic plants and animals.

Because wetlands are often in low-lying areas of the landscape, they can store and slowly release surface water. Wetlands can be extremely important for reducing the impacts of flooding. In some places, water entering wetlands can also recharge groundwater aquifers that are important for irrigation and drinking water.

Wetlands also act as important carbon sinks. As wetland plants grow, they remove carbon dioxide from the atmosphere. They they die, sink to the bottom of the wetland and decompose very slowly.

Over time, the carbon they contain accumulates in wetland soils, where it can be stored for hundreds of years. Conserving and restoring wetlands is an important strategy for regulating greenhouse gases and mitigating the impacts of climate change.

Resources at risk

Despite the many valuable services they provide, wetlands are constantly being destroyed by draining them or filling them in, mainly for farming and development. Since 1970, the planet has lost 35% of its wetlands, a rate three times faster than the loss of forests.

Destruction and degradation of wetlands has led to the loss of many organisms that rely on wetland habitat, including birds, amphibians, fish, mammals and many insects. As one example, many dragonfly and damselfly species are declining worldwide as the freshwater wetlands where they breed are drained and filled in. A marsh or bog may not look like a productive place, but wetlands teem with life and are critically important parts of our environment.


Disclosure statement
Jon Sweetman receives funding from the US EPA for work on wetland restoration. He is affiliated with the Society for Freshwater Science, the Ecological Society of America, and the Society of Wetland Scientists

Our food systems are failing. Can trees and forests dish up better diets for everyone?

VI Agroforestry in Masaka, Uganda. September 2013. NatureDan, CC BY-SA 3.0, via Wikimedia Commons.
VI Agroforestry in Masaka, Uganda. September 2013. NatureDan, CC BY-SA 3.0, via Wikimedia Commons.

Scientists argue for greater inclusion of trees and forests in the race to transform global food systems.

By Monica Evans, Forests News (CC BY-NC-SA 4.0)

Despite all of the technological and informational advancements of recent decades, we’ve so far failed to feed our global population sufficiently, safely, nutritiously and sustainably.

Over 2 billion people experience food insecurity; almost 700 million are undernourished; and 39% of all adults are classified as overweight or obese.

A significant factor in these health challenges is that there’s a serious lack of food diversity: just 15 crops provide 90% of humanity’s energy intake and not enough nutrient-rich foods are being produced to go around. For instance, just 40 countries, representing 26% of the global population, have a sufficient supply of fruits and vegetables to meet recommended daily consumption.

Meanwhile, our global food system generates more than a third of global anthropogenic greenhouse-gas emissions; takes around 70% of all freshwater withdrawals; and is to blame for about a quarter of ocean acidification, alongside serious soil depletion and the destruction of natural habitats and biodiversity.

“It is increasingly evident that nothing short of a radical transformation of food systems will end global hunger and malnutrition while reversing to acceptable limits the environmental damage our food systems have already caused,” state the authors of a new Viewpoint in the July 2022 edition of leading journal, Lancet Planet Health. “A new global food system must produce greater quantities of a more diverse range of nutrient-dense foods rather than only providing more calories. It must also produce these diverse foodstuffs sustainably, reversing current trajectories of land degradation so that production acts as a net carbon sink and reservoir of biodiversity.”

So, how can we help to bring that shift into being?

As the authors highlight, trees and forests have a critical role to play.

To date, this has been largely overlooked in food-system transformation conversations “because of the absence of a comprehensive and system-wide approach to food systems, problems related to measuring and recording multiple contributions from trees and forests, and a focus on forests as sources of timber rather than food… A perspective we consider to be in danger of being mistakenly replicated in current discourses in the international development community that see trees and forests primarily as global carbon stores,” write the authors.

So, how can we help to bring that shift into being? As the Viewpoint highlights, trees and forests represent a critical, but as-yet-underacknowledged, part of the solution.

“We’ve been surprised and disappointed that despite all that we have learned and what seem to us to be the obvious important roles of forests and trees, that they still seem to be largely ignored,” said Amy Ickowitz, the study’s lead author and a senior scientist with the Center for International Forestry Research and World Agroforestry (CIFOR-ICRAF).

“Conserving forests and promoting trees for food security and nutrition are some of the obvious ways to achieve ‘win-wins’, which are quite rare in addressing the tremendous challenges of global malnutrition, dwindling biodiversity, and climate change,” she said. “Of course, there are obstacles — institutional, economic, and logistical — but these can all be addressed, once there is agreement that food systems should be nudged in this direction. In our Viewpoint we offer some suggestions of how to do this”

Silent service-providers

The authors draw attention to the multiple ways that trees and forests already contribute towards healthy diets and sustainable food systems. Tree cover, for instance, has been linked to greater dietary diversity and higher consumption of nutrient-rich foods, such as fruits and vegetables. All nuts, and over half of all human-consumed fruits, grow on trees. Forests provide particularly important sources of wild foods — including fruits, vegetables and meat — for the 1.6 billion people around the globe who live within 5 kilometres of them. Trees and forests also provide fodder for animals, supporting the production of meat and milk.

Trees and forests also provide wood fuels, which are a critical source of energy for cooking for around 2.4 billion people, thus, enabling the consumption of nutrient-rich foods such as meats and legumes. They also provide incomes that can support food security and nutrition, such as through cultivating and selling tree crops like coffee and cocoa; employment in logging or ecotourism; and collecting and selling non-timber forest products. Agriculture benefits from the ecosystem services provided by trees and forests, such as pest and disease regulation, pollinator habitat, micro-climate control, water and nutrient cycling, carbon sequestration, protection against soil erosion, and nitrogen fixation.

What’s more, trees and forests contribute to the stability and resilience of food systems, for example, through their tendency to survive extreme weather events better than annual crops; their role in supporting ‘lean-season’ diets through the provision of wild foods; their ability to fill seasonal gaps in food production; and the ‘safety net’ they provide in terms of offering wood and non-wood products that can be sold for income.

“Whether directly consumed as food or sold for food purchases, forest and tree products are, in many cases, the only resources accessible to women and other marginalized groups when hardship strikes and are therefore key resources to reduce their vulnerabilities,” state the authors.

Areas for intervention

To maximize the multiple benefits of including trees and forests more broadly and explicitly in food-system transformation, the authors list four key areas for intervention. First, they recommend building on current knowledge by increasing the scale of existing tree-based agricultural system solutions. Many of these solutions are not yet being adopted at sufficient scales to make decisive impact but could do so with appropriate support. This will in many cases require secure tree and land tenure, “which is not yet the case for many tree growers,” they write.

“To be effective, measures to increase land-tenure security should be connected with incentives for sustainable practices, including for tree maintenance on farms.”

Drivers for the adoption of agroforestry measures were also found to be highly context-specific, highlighting the importance of working with, and building on, existing local knowledge in any kind of agroforestry intervention.

Second, the authors recommend reorienting agricultural investments from staple crops to more diverse, nutrient-dense foods.

Over the past half-century, staple crops — such as wheat, maize and rice — have received billions of dollars in investment, which has enhanced their productivity and decreased their purchase prices in comparison to those of more nutritionally-important foods such as fruits, nuts and vegetables. In order to increase consumption of these, it will be critical to improve their productivity and lower their costs, alongside using education and social marketing to raise awareness of the health and environmental benefits of better food choices.

Third, there is a need to repurpose producer and consumer incentives towards nutrient-dense foods and more sustainable production practices. This will require policy shifts at both national and international levels. Currently, incentives such as direct price support and targeted fertiliser subsidies distort production towards staple crops.

“These incentives should be reduced or removed and direct and indirect price interventions by governments, which are designed to consider more closely both nutritional needs and environmental impacts, should be implemented,” write the authors.

Such subsidies could be reoriented towards producing nutrient-rich foods and integrating trees on farms.

Fourth, food and nutrition objectives ought to be explicitly integrated into forest restoration and conservation practices and policies. The global forest restoration agenda has to date been largely dominated by carbon-mitigation considerations. However, restoration initiatives that focus too narrowly on that objective — and neglect the needs of local people — often fail. Planting food trees, write the authors, could help to address multiple objectives at once, supporting local involvement and sustainable livelihoods alongside carbon sequestration.

As the authors make clear, trees and forests already contribute positively to diets and ecosystems across the globe and there is potential to scale up those contributions much further to address our multiple crises.