How Reforestation in the Eastern United States Combats Climate Change: A Century’s Insight

Borley wood - restoration This view shows a area from which planted exotic conifer species have just been removed to allow site native species to re-assert themselves (NVC W8 ash/maple woodland type), October 17, 2006.
Borley wood – restoration This view shows a area from which planted exotic conifer species have just been removed to allow site native species to re-assert themselves (NVC W8 ash/maple woodland type), October 17, 2006.

  

A recent study “A Century of Reforestation Reduced Anthropogenic Warming in the Eastern United States” unveils a silver lining through the lens of historical reforestation efforts in the Eastern United States. Spanning over a century, these endeavors have contributed to the greening of landscapes and played a pivotal role in reducing anthropogenic warming across the region. This study revealed the significant impact of reforestation on local climate mitigation and underscores the potential of nature-based solutions in our fight against global warming.

The Cooling Effect of Reforestation

The research, conducted by a team of environmental scientists, reveals that reforestation in the Eastern U.S. has led to a noticeable cooling of both land surface and near-surface air temperatures. By analyzing ground and satellite-based observations, the study highlights a significant reduction in temperatures, with forests cooling the land surface by 1–2°C annually compared to adjacent grasslands and croplands. This cooling effect is most pronounced during the growing season’s midday, offering a natural buffer against the rising temperatures associated with climate change.

A Shift in Climate Trends

Interestingly, the study correlates the extensive reforestation efforts with the anomalous lack of warming in the Eastern U.S. throughout the 20th century. Unlike other North American regions that experienced substantial warming, the Eastern U.S. showed minor cooling trends, attributed to the biophysical impacts of reforestation. This phenomenon, often referred to as the “warming hole,” underscores the potential of strategic reforestation efforts in tempering regional climate trends.

Implications for Climate Adaptation

The findings of this study underscore reforestation’s dual benefits: sequestering carbon dioxide from the atmosphere and directly cooling the Earth’s surface. In the face of escalating climate change, reforestation emerges as a vital nature-based solution, offering a sustainable pathway for climate adaptation and mitigation. The study’s insights highlight the importance of preserving and expanding forested areas as a proactive measure against global warming.

Renewed Focus on Reforestation & Conservation

As we move forward, the study calls for a renewed focus on reforestation and forest conservation as key strategies in the global climate action agenda. By learning from the century-long reforestation efforts in the Eastern U.S., we can harness the power of nature to forge a cooler, more sustainable future for our planet.

The study provides compelling evidence of reforestation’s positive impact on climate. It serves as a call to action for policymakers, environmentalists, and communities worldwide to invest in reforestation as a practical and impactful climate solution.

Guardians of Genetic Diversity: Revive & Restore Spearheads Pioneering Biobanking Project

Field biologists enter a restoration site for the endangered Preble’s meadow jumping mouse. Credit: Kika Tuff / Revive & Restore
Field biologists enter a restoration site for the endangered Preble’s meadow jumping mouse (Zapus hudsonius preblei). Credit: Kika Tuff / Revive & Restore

A Landmark Biobanking Initiative

In a pioneering effort to counter the escalating threats of biodiversity loss, Revive & Restore, in conjunction with the U.S. Fish & Wildlife Service, has initiated the first agency-wide biobanking program for U.S. endangered species. This strategic effort intends to indefinitely preserve living cells from these species, thus conserving their invaluable genetic diversity. The technique used to conserve endangered species by storing their genetic material is known as cryopreservation.

“Biobanking gives us the chance to save irreplaceable genetic diversity,” explains Seth Willey, Deputy Assistant Regional Director at the US Fish & Wildlife Service’s Southwest Region. “If done right, it creates a marker-in-time and gives future recovery biologists options, like genetic rescue, that are only possible if we act now.”

Biobanking has three core applications:

  • Preserving Genetic Diversity: Cryopreserving cells help maintain the genetic diversity, which is crucial for future restoration projects.
  • Managing with Genomic Insight: Sequencing DNA from preserved cells can offer insights into wildlife management and restoration opportunities.
  • Genetic Rescue through Technology: By leveraging advanced biotechnologies, the stored genetic material can reintroduce genetic diversity, refine reproductive tools, and possibly recover extinct species.

The biobanking procedure consists of four phases:

  1. Collaboration: Engage with field biologists for effective tissue sample collection.
  2. Collection: Process collected samples either for primary cell culture or immediate cryopreservation.
  3. Protection: Store frozen cell lines and tissue in a national repository for long-term preservation.
  4. Application: Utilize these samples to construct a reference genome accessible to researchers for conservation activities.

Less than 14% of over 1,700 U.S. threatened or endangered species have cryopreserved living tissue. This initiative intends to change this, starting with the biobanking of 24 selected endangered mammals including the Mexican Wolf, Sonoran Pronghorn, Florida Bonneted Bat, and Preble’s Meadow Jumping Mouse.

Ryan Phelan, Executive Director of Revive & Restore, stated, “This is about creating a legacy of America’s natural history before it is lost.” The program has garnered support and participation from notable institutions like ViaGen Pets & Equine and the U.S. Department of Agriculture, among others.

Furthermore, to assist field biologists in biobanking, Revive & Restore has introduced resources like sample collection protocols and visual aids available on their project webpage.

In short, this multi-institutional partnership is poised to significantly advance the preservation of U.S. endangered species, marking a significant stride in conserving America’s rich biodiversity.

Forest Whispers: Respecting Nature’s Kinship and the Hidden Dialogue of Trees

Hawai’ian Kahuna Insights: Ancient Wisdom of the Islands

With the damage caused by the Lahaina inferno fresh in our minds, we went searching for Hawai’ian wisdom. We came across a very wise Hawai’i Kūpuna Elder, Kimokeo Kapahulehua. In this TikTok post, he shares sage advice that can benefit humanity, and protect our biodiversity.

@wisdom.keepers

Kimokeo Kapahulehua – Kūpuna Elder, Hawai’i Like / Follow / Share✨ @wisdom.keepers Uncle Kimokeo is a kūpuna elder born on the island of Kaua’i. He is dedicated to preserving and sharing his culture and traditions through his foundation @kimokeofoundation. He is a member of many canoe teams both in Hawai’i and around the world. 🌀For full interviews, community page and more join our WK Community on Patreon 🌀 ✨LINK IN BIO✨ #aloha #kupuna #elder #hawaii #wisdomkeeper #canoe #laka #mahalo #wisdomkeepers #native #indigenous #areyoulistening Film: @Jeremy Whelehan Music: Ynglingtal feat. Jhon Montoya WKTeam: @motherwaters @grandchildofthemoon Project: @wisdom.keepers Respect, Love & Gratitude. Hoomaikai me ka mahalo 💚🌿

♬ 【No drums】 Emotional space-like epic … – MoppySound

You cannot go to the forest and just take a tree.
You have to ask Laka.
She’s the goddess of the forest. That’s her child.
Why do you want to take her child without permission?
And as the canoe maker, and as…
He has to go up and tell Laka
“I’m going to take one of your child[ren], and I’m going to make it into a canoe.”
Laka will be very happy when you take her child and make it into many lives and serve many, many people.
We cannot just take.
We need to give.
So if you take one of her child[ren], maybe you should go plant?
And give back Laka 40 children.
Take the seed of the plant and take it right back to the same location because her children would like to be born with the parents, and the great grandparents, and the great great grandparents.
Don’t take her child from the forest to another forest because they will all grow better with their family.
Like us.

—Kimokeo Kapahulehua, Kūpuna Elder

Elder’s Wisdom is Backed by Science

Science suggests that trees can “communicate” with each other through a complex network of mycorrhizal fungi. This underground network allows trees to exchange nutrients, send warning signals about environmental changes, and share resources with one another.

Dr. Suzanne Simard, a professor of forest ecology at the University of British Columbia, is one of the primary researchers in this area. In her studies, she found that trees can transfer carbon, water, and nutrients to other trees in times of need. She discovered that mother trees recognize their kin and send them more carbon below ground. They reduce their own root competition to make elbow room for their kids.

“When mother trees are injured or dying, they also send messages of wisdom on to the next generation of seedlings.”

—Dr. Suzanne Simard, Professor, RPF, Leader of The Mother Tree Project, Department of Forest and Conservation Sciences, University of British Columbia

These findings validate the guidance shared by Kūpuna Elder, Kimokeo Kapahulehua.

Further, planting trees in non-native environments can have diverse ecological consequences. Research has shown that non-native trees can impact local ecosystems by:

  • Changing soil properties
  • Loss of humidity
  • Introduction of invasive alien species and disease
  • Negative impacts on biodiversity
  • Higher risks of adverse effects of fires and stores

When non-native tree species become invasive, they can outcompete, displace native species, alter habitat structures, and even change the soil properties and nutrient cycling.

It’s Time to Listen to the Wisdom

Whether we choose to listen to the wisdom of our elders or to science, climate disasters that are increasingly common underscore the urgency of listening and acting upon this wisdom.

Sources:

  • Simard, S.W., Beiler, K.J., Bingham, M.A., Deslippe, J.R., Philip, L.J., & Teste, F.P. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26(1), 39-60.
  • Source: Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Quine, C.P., & Sayer, J. (2008). Plantation forests and biodiversity: oxymoron or opportunity? Biodiversity and Conservation, 17(5), 925-951.
Maui, Hawaii 023 Lahaina, Banyan Tree, Allie_Caulfield from Germany, CC BY 2.0, via Wikimedia Commons
Maui, Hawaii 023 Lahaina, Banyan Tree, Allie_Caulfield from Germany, CC BY 2.0, via Wikimedia Commons